NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.01, delta -> 0, t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi]} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. U/2 - coefzeta[1, 0] + delta*nc[d[0, 0], d[1, 0]] - (U*nc[d[0, 0], d[1, 0]])/2 + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + delta*nc[d[0, 1], d[1, 1]] - (U*nc[d[0, 1], d[1, 1]])/2 + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.3832644937419565 faktor=1.2521472324380978 Generating basis Basis states generated. BASIS NR=16 Basis: basis.SIAM..QS PREC=1000 Tmin=1.*^-10 Tmin=1.*^-10 ==> Nmax=42 DISCNMAX=42 mMAX=84 Diagonalisation. Discretization checksum [-1] (channel 1): 3.664153529659208014121041933113522168`10.*^-41 BAND="flat" thetaCh={"2."} Discretization (channel 1) "xitable" (channel 1) 0.588663577 0.4480798744 0.2750509052 0.1548118065 0.08875189763 0.05122287612 0.02957651045 0.01707686528 0.009859513449 0.005692428451 0.003286532029 0.001897481489 0.001095511706 0.0006324940281 0.0003651706069 0.0002108313501 0.0001217235371 0.00007027711696 0.00004057451241 0.00002342570566 0.00001352483747 7.808568555e-6 4.508279157e-6 2.602856185e-6 1.502759719e-6 8.676187283e-7 5.009199063e-7 2.892062428e-7 1.669733021e-7 9.640208092e-8 5.565776737e-8 3.213402697e-8 1.855258912e-8 1.071134232e-8 6.184196374e-9 3.570447442e-9 2.061398791e-9 1.190149147e-9 6.871329305e-10 3.967163824e-10 2.290443102e-10 1.322387941e-10 7.634810339e-11 "zetatable" (channel 1) 0.e-999 0.e-998 0.e-998 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-991 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-985 0.e-984 0.e-983 0.e-983 0.e-982 0.e-981 0.e-980 0.e-979 0.e-978 0.e-977 0.e-976 0.e-975 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-969 0.e-968 0.e-968 0.e-967 0.e-966 0.e-965 0.e-964 0.e-963 0.e-962 Precision last xi:952.3058901732031 Precision last zeta: 0. Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 42, 6}} maketable[] exnames={d, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin} thetaCh={"2."} theta0Ch={"0.0012"} gammaPolCh={"0.019544100476116797"} checkdefinitions[] -> 0.06317640190446719 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.SIAM..QS_-2.1 hamil={{(U - 2*coefzeta[1, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.SIAM..QS_-1.2 hamil={{U/2, gammaPolCh[1]}, {gammaPolCh[1], delta - coefzeta[1, 0]}} dim={2, 2} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=8.881784197001252*^-16 diagvc[{0, 1}] Generating matrix: ham.SIAM..QS_0.1 hamil={{U/2 + coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0}, {Sqrt[2]*gammaPolCh[1], delta, Sqrt[2]*gammaPolCh[1]}, {0, Sqrt[2]*gammaPolCh[1], (4*delta + U - 2*coefzeta[1, 0])/2}} dim={3, 3} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=9.992007221626409*^-16 diagvc[{0, 3}] Generating matrix: ham.SIAM..QS_0.3 hamil={{delta}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.SIAM..QS_1.2 hamil={{delta + coefzeta[1, 0], -gammaPolCh[1]}, {-gammaPolCh[1], (4*delta + U)/2}} dim={2, 2} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=8.881784197001252*^-16 diagvc[{2, 1}] Generating matrix: ham.SIAM..QS_2.1 hamil={{2*delta + U/2 + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.03666806675957081, -0.017203346503082893, -0.01720334650308289, 0., 0.005, 0.005, 0.005000000000000005, 0.02220334650308289, 0.022203346503082894, 0.04166806675957079} Lowest energies (GS shifted):{0., 0.019464720256487916, 0.01946472025648792, 0.03666806675957081, 0.041668066759570806, 0.041668066759570806, 0.04166806675957081, 0.0588714132626537, 0.0588714132626537, 0.0783361335191416} Scale factor SCALE(Ninit):1.3832644937419565 Lowest energies (shifted and scaled):{0., 0.01407158236515756, 0.014071582365157561, 0.02650835536187132, 0.03012299307043722, 0.03012299307043722, 0.030122993070437223, 0.04255976606715098, 0.04255976606715098, 0.05663134843230852} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.SIAM..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] s: n_d_ud op.SIAM..QS.n_d_ud -nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] s: flm op.SIAM..QS.flm nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] + 2*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] s: n_d^2 op.SIAM..QS.n_d^2 nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] - 2*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] s: hop0 op.SIAM..QS.hop0 nc[d[0, 0], f[1, 0, 0]] + nc[d[0, 1], f[1, 0, 1]] + nc[f[0, 0, 0], d[1, 0]] + nc[f[0, 0, 1], d[1, 1]] operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.012884`4.561595709643627} {ham, 0.028541`4.12886292866999} {maketable, 0.314839`5.949633517804674} {xi, 0.495505`6.14659303468145} {_, 0} data gammaPol=0.019544100476116797 "Success!"