NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.0.0 for Linux x86 (64-bit) (July 28, 2016) sneg version: 1.250 Loading module initialparse.m Options: {} def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.01, delta -> 0, t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi]} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. U/2 - coefzeta[1, 0] + delta*nc[d[0, 0], d[1, 0]] - (U*nc[d[0, 0], d[1, 0]])/2 + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + delta*nc[d[0, 1], d[1, 1]] - (U*nc[d[0, 1], d[1, 1]])/2 + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.2131570881878404 faktor=1.1657299587521546 Generating basis Basis states generated. BASIS NR=16 Basis: basis.SIAM..QS PREC=1000 Tmin=1.*^-10 Tmin=1.*^-10 ==> Nmax=66 DISCNMAX=66 mMAX=132 Diagonalisation. Discretization checksum [-1] (channel 1): 1.0921142544088820340677128502455565538`10.*^-40 BAND="flat" thetaCh={"2."} Discretization (channel 1) "xitable" (channel 1) 0.5874247114 0.5057381329 0.4062030654 0.2949707354 0.2101971291 0.1498498163 0.1065568805 0.07557981328 0.05352798514 0.0378804541 0.02679636 0.01895172987 0.01340225709 0.009477308193 0.006701639126 0.00473883467 0.003350883415 0.002369439912 0.00167544969 0.001184722778 0.0008377258429 0.0005923617419 0.0004188630462 0.000296180915 0.0002094315387 0.000148090463 0.0001047157713 0.0000740452322 0.00005235788589 0.00003702261619 0.00002617894297 0.0000185113081 0.00001308947149 9.255654054e-6 6.544735746e-6 4.627827027e-6 3.272367873e-6 2.313913514e-6 1.636183937e-6 1.156956757e-6 8.180919683e-7 5.784783784e-7 4.090459841e-7 2.892391892e-7 2.045229921e-7 1.446195946e-7 1.02261496e-7 7.23097973e-8 5.113074802e-8 3.615489865e-8 2.556537401e-8 1.807744932e-8 1.2782687e-8 9.038724662e-9 6.391343502e-9 4.519362331e-9 3.195671751e-9 2.259681166e-9 1.597835875e-9 1.129840583e-9 7.989179377e-10 5.649202914e-10 3.994589689e-10 2.824601457e-10 1.997294844e-10 1.412300728e-10 9.986474222e-11 "zetatable" (channel 1) 0.e-999 0.e-998 0.e-997 0.e-996 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-991 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-986 0.e-985 0.e-984 0.e-983 0.e-982 0.e-981 0.e-980 0.e-980 0.e-979 0.e-978 0.e-977 0.e-976 0.e-975 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-969 0.e-969 0.e-968 0.e-967 0.e-966 0.e-965 0.e-964 0.e-964 0.e-963 0.e-962 0.e-961 0.e-960 0.e-959 0.e-958 0.e-958 0.e-957 0.e-956 0.e-955 0.e-954 0.e-953 0.e-953 0.e-952 0.e-951 0.e-950 0.e-949 0.e-948 0.e-948 0.e-947 0.e-946 0.e-945 0.e-944 0.e-943 Precision last xi:933.61604029965 Precision last zeta: 0. Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 66, 6}} maketable[] exnames={d, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin} thetaCh={"2."} theta0Ch={"0.002"} gammaPolCh={"0.025231325220201602"} checkdefinitions[] -> 0.08592530088080641 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.SIAM..QS_-2.1 hamil={{(U - 2*coefzeta[1, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.SIAM..QS_-1.2 hamil={{U/2, gammaPolCh[1]}, {gammaPolCh[1], delta - coefzeta[1, 0]}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=4.440892098500626*^-16 diagvc[{0, 1}] Generating matrix: ham.SIAM..QS_0.1 hamil={{U/2 + coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0}, {Sqrt[2]*gammaPolCh[1], delta, Sqrt[2]*gammaPolCh[1]}, {0, Sqrt[2]*gammaPolCh[1], (4*delta + U - 2*coefzeta[1, 0])/2}} dim={3, 3} det[vec]=1. 1-abs=0. orthogonality check=1.3322676295501878*^-15 diagvc[{0, 3}] Generating matrix: ham.SIAM..QS_0.3 hamil={{delta}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.SIAM..QS_1.2 hamil={{delta + coefzeta[1, 0], -gammaPolCh[1]}, {-gammaPolCh[1], (4*delta + U)/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=4.440892098500626*^-16 diagvc[{2, 1}] Generating matrix: ham.SIAM..QS_2.1 hamil={{2*delta + U/2 + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.048024539478062775, -0.022854876697936857, -0.022854876697936857, 0., 0.004999999999999999, 0.005, 0.005, 0.027854876697936858, 0.027854876697936858, 0.0530245394780628} Lowest energies (GS shifted):{0., 0.025169662780125918, 0.025169662780125918, 0.048024539478062775, 0.05302453947806277, 0.05302453947806277, 0.05302453947806277, 0.07587941617599964, 0.07587941617599964, 0.10104907895612558} Scale factor SCALE(Ninit):1.2131570881878404 Lowest energies (shifted and scaled):{0., 0.020747241247811715, 0.020747241247811715, 0.039586414608350246, 0.043707892402680054, 0.043707892402680054, 0.043707892402680054, 0.0625470657632186, 0.0625470657632186, 0.08329430701103033} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" d: A_d d ireducTable: d{} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007991`4.354146124162503} {ham, 0.0377939999999999999`4.250816601845847} {maketable, 0.413617`6.068143373810262} {xi, 0.996096`6.449846189611565} {_, 0} data gammaPol=0.0252313252202016 "Success!"