NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.0.0 for Linux x86 (64-bit) (July 28, 2016) sneg version: 1.250 Loading module initialparse.m Options: {} def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done UpSet::write: Tag Gamma in isnumericQ[Gamma] is Protected. UpSet::write: Tag Gamma in Conjugate[Gamma] is Protected. params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.01, delta -> 0, t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.01, Gamma -> 0.001, delta -> 0} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. U/2 - coefzeta[1, 0] + delta*nc[d[0, 0], d[1, 0]] - (U*nc[d[0, 0], d[1, 0]])/2 + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + delta*nc[d[0, 1], d[1, 1]] - (U*nc[d[0, 1], d[1, 1]])/2 + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.4426950408889634 faktor=0.9802581434685472 Generating basis Basis states generated. BASIS NR=16 Basis: basis.SIAM..QS PREC=1000 Tmin=1.*^-10 Tmin=1.*^-10 ==> Nmax=67 DISCNMAX=67 mMAX=134 Diagonalisation. Discretization checksum [-1] (channel 1): 3.246875104347335874645939544192267024`10.*^-41 BAND="flat" thetaCh={"2."} Discretization (channel 1) "xitable" (channel 1) 0.5953226115 0.5603099649 0.5064499029 0.3760615863 0.2584236143 0.1802987598 0.1273062622 0.09006951794 0.06372036782 0.04507012295 0.03187428225 0.02254029972 0.01593903604 0.01127082725 0.007969758817 0.005635498988 0.003984909629 0.002817760186 0.001992458596 0.00140888143 0.0009962297707 0.0007044408822 0.0004981149445 0.000352220462 0.0002490574796 0.0001761102336 0.0001245287407 0.00008805511713 0.00006226437048 0.00004402755861 0.00003113218526 0.00002201377931 0.00001556609263 0.00001100688966 7.783046315e-6 5.503444828e-6 3.891523157e-6 2.751722414e-6 1.945761579e-6 1.375861207e-6 9.728807894e-7 6.879306035e-7 4.864403947e-7 3.439653017e-7 2.432201973e-7 1.719826509e-7 1.216100987e-7 8.599132543e-8 6.080504934e-8 4.299566272e-8 3.040252467e-8 2.149783136e-8 1.520126233e-8 1.074891568e-8 7.600631167e-9 5.374457839e-9 3.800315583e-9 2.68722892e-9 1.900157792e-9 1.34361446e-9 9.500788959e-10 6.718072299e-10 4.750394479e-10 3.35903615e-10 2.37519724e-10 1.679518075e-10 1.18759862e-10 8.397590374e-11 "zetatable" (channel 1) 0.e-999 0.e-998 0.e-997 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-991 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-986 0.e-985 0.e-984 0.e-983 0.e-982 0.e-981 0.e-980 0.e-980 0.e-979 0.e-978 0.e-977 0.e-976 0.e-975 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-969 0.e-969 0.e-968 0.e-967 0.e-966 0.e-965 0.e-964 0.e-964 0.e-963 0.e-962 0.e-961 0.e-960 0.e-959 0.e-959 0.e-958 0.e-957 0.e-956 0.e-955 0.e-954 0.e-953 0.e-953 0.e-952 0.e-951 0.e-950 0.e-949 0.e-948 0.e-948 0.e-947 0.e-946 0.e-945 0.e-944 0.e-943 0.e-942 Precision last xi:932.7100523449728 Precision last zeta: 0. Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 67, 6}} maketable[] exnames={d, delta, g, Gamma, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} UpSet::write: Tag Gamma in isnumericQ[Gamma] is Protected. UpSet::write: Tag Gamma in Conjugate[Gamma] is Protected. thetaCh={"2."} theta0Ch={"0.002"} gammaPolCh={"0.025231325220201602"} checkdefinitions[] -> 0.08592530088080641 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.SIAM..QS_-2.1 hamil={{(U - 2*coefzeta[1, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.SIAM..QS_-1.2 hamil={{U/2, gammaPolCh[1]}, {gammaPolCh[1], delta - coefzeta[1, 0]}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=4.440892098500626*^-16 diagvc[{0, 1}] Generating matrix: ham.SIAM..QS_0.1 hamil={{U/2 + coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0}, {Sqrt[2]*gammaPolCh[1], delta, Sqrt[2]*gammaPolCh[1]}, {0, Sqrt[2]*gammaPolCh[1], (4*delta + U - 2*coefzeta[1, 0])/2}} dim={3, 3} det[vec]=1. 1-abs=0. orthogonality check=1.3322676295501878*^-15 diagvc[{0, 3}] Generating matrix: ham.SIAM..QS_0.3 hamil={{delta}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.SIAM..QS_1.2 hamil={{delta + coefzeta[1, 0], -gammaPolCh[1]}, {-gammaPolCh[1], (4*delta + U)/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=4.440892098500626*^-16 diagvc[{2, 1}] Generating matrix: ham.SIAM..QS_2.1 hamil={{2*delta + U/2 + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.048024539478062775, -0.022854876697936857, -0.022854876697936857, 0., 0.004999999999999999, 0.005, 0.005, 0.027854876697936858, 0.027854876697936858, 0.0530245394780628} Lowest energies (GS shifted):{0., 0.025169662780125918, 0.025169662780125918, 0.048024539478062775, 0.05302453947806277, 0.05302453947806277, 0.05302453947806277, 0.07587941617599964, 0.07587941617599964, 0.10104907895612558} Scale factor SCALE(Ninit):1.4426950408889634 Lowest energies (shifted and scaled):{0., 0.017446280791688872, 0.017446280791688872, 0.033288074136909, 0.03675381003970872, 0.03675381003970872, 0.03675381003970872, 0.05259560338492885, 0.05259560338492885, 0.07004188417661775} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" d: A_d d ireducTable: d{} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.008462`4.3790180144912485} {ham, 0.0241890000000000001`4.057011657631345} {maketable, 0.243077`5.837288861242484} {xi, 0.90211`6.4068044905504395} {_, 0} data gammaPol=0.0252313252202016 "Success!"