NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.5*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.5*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.5*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.5*nc[d[0, 1], d[1, 0], d[1, 1]] UpSet::write: Tag Gamma in isnumericQ[Gamma] is Protected. UpSet::write: Tag Gamma in Conjugate[Gamma] is Protected. params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.5, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.5, epsilon -> -0.15, Gamma -> 0.03} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0] + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=2.058462536957593 faktor=0.7681163983781373 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QS PREC=1000 Tmin=1.*^-8 Tmin=1.*^-8 ==> Nmax=41 DISCNMAX=41 mMAX=82 Diagonalisation. Discretization checksum [-1] (channel 1): 1.8596631555430159099592554`10.*^-33 BAND="flat" thetaCh={"2."} Discretization (channel 1) "xitable" (channel 1) 0.5764050108 0.5724972424 0.5984206622 0.4139068254 0.2264628898 0.1343030568 0.08380624812 0.05280988517 0.03335618011 0.02108564357 0.01333307351 0.008431907273 0.00533263757 0.003372613458 0.002133017247 0.001349035828 0.0008532044818 0.0005396137197 0.000341281638 0.0002158454488 0.0001365126453 0.000086338177 0.00005460505749 0.00003453527064 0.00002184202296 0.00001381410825 8.73680918e-6 5.525643298e-6 3.494723672e-6 2.210257319e-6 1.397889469e-6 8.841029276e-7 5.591557875e-7 3.536411711e-7 2.23662315e-7 1.414564684e-7 8.946492599e-8 5.658258737e-8 3.57859704e-8 2.263303495e-8 1.431438816e-8 9.053213979e-9 "zetatable" (channel 1) 0.e-999 0.e-998 0.e-997 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-992 0.e-991 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-985 0.e-985 0.e-984 0.e-983 0.e-982 0.e-981 0.e-980 0.e-979 0.e-979 0.e-978 0.e-977 0.e-976 0.e-975 0.e-974 0.e-973 0.e-972 0.e-972 0.e-971 0.e-970 0.e-969 0.e-968 0.e-967 0.e-966 0.e-966 0.e-965 0.e-964 Precision last xi:956.0274418986555 Precision last zeta: 0. Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 41, 6}} maketable[] exnames={d, epsilon, g, Gamma, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} UpSet::write: Tag Gamma in isnumericQ[Gamma] is Protected. UpSet::write: Tag Gamma in Conjugate[Gamma] is Protected. thetaCh={"2."} theta0Ch={"0.06"} gammaPolCh={"0.13819765978853418"} checkdefinitions[] -> -0.24720936084586329 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{0, gammaPolCh[1]}, {gammaPolCh[1], epsilon - coefzeta[1, 0]}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0}, {Sqrt[2]*gammaPolCh[1], epsilon, Sqrt[2]*gammaPolCh[1]}, {0, Sqrt[2]*gammaPolCh[1], 2*epsilon + U - coefzeta[1, 0]}} dim={3, 3} det[vec]=1. 1-abs=0. orthogonality check=1.4988010832439613*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{epsilon}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{epsilon + coefzeta[1, 0], -gammaPolCh[1]}, {-gammaPolCh[1], 2*epsilon + U}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*epsilon + U + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.3352837288160819, -0.23223737841565356, -0.19798787673554685, -0.15, 0., 0.0729510320227, 0.08223737841565357, 0.2, 0.24798787673554687, 0.3123326967933819} Lowest energies (GS shifted):{0., 0.10304635040042837, 0.13729585208053507, 0.18528372881608193, 0.3352837288160819, 0.4082347608387819, 0.4175211072317355, 0.5352837288160819, 0.5832716055516288, 0.6476164256094639} Scale factor SCALE(Ninit):2.058462536957593 Lowest energies (shifted and scaled):{0., 0.050059861935952854, 0.06669825154236632, 0.0900107364061778, 0.16288065621618314, 0.19832022857319168, 0.2028315306864081, 0.26004054929619025, 0.2833530341600018, 0.31461171334535953} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.010374`4.467491237153541} {ham, 0.018871`3.9491886577433317} {maketable, 0.314286`5.948870029116911} {xi, 0.460063`6.114362300566521} {_, 0} data gammaPol=0.13819765978853418 "Success!"