NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.5*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.5*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.5*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.5*nc[d[0, 1], d[1, 0], d[1, 1]] UpSet::write: Tag Gamma in isnumericQ[Gamma] is Protected. UpSet::write: Tag Gamma in Conjugate[Gamma] is Protected. params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.5, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.5, epsilon -> -0.15, Gamma -> 0.03} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0] + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.6370350019059374 faktor=0.9658552372083249 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QS PREC=1000 Tmin=1.*^-8 Tmin=1.*^-8 ==> Nmax=41 DISCNMAX=41 mMAX=82 rho[0]=0.0000300161346563077 pos=0.000613480452894044 neg=0.0006514280199551451 theta=0.039965613283678223807556166393701616598783240298284976977330052185131147079338206751948934344654232602718977492477254476698438072714423851596896060071804477917612364227380594154002567252570665320645265155756169678505555196434058643\ 02087382128319009938644855709975271427452406197776513993849058417584770247089484005963299572750273658032460244536545544218565615133765918567454069635410848851995154627148382524889286317740178384939782548693778506963223547006038215294157374\ 65635941693583704097650255301103041313055275279746278124721043467832408430156407479082064033219208316889280385141879808222018763979312832837349001111778999864240250688920175072703013032504225828299163660366780353561350197095289825969666711\ 65037102712369662310860182035593153550630347551363188950436792262553552988239562440845989893696177306941522191325244954709215154053837382316710002340954123223692852978643040793409024665159228178385047392770197930327599697074380253432261472\ 4913455982876723127910573880830446603121538376130646061679012847325749441`1000. {1, 0.9941371628839627} {2, 1.104931781925907} {3, 1.109264474127544} {4, 1.11098383618932} {5, 1.111757513999395} {6, 1.1121252906285455} {7, 1.1123046818922293} {8, 1.112393288696642} {9, 1.1124373156465297} {10, 1.1124592557331094} {11, 1.1124701914649815} {12, 1.112475590302766} {13, 1.1124781207462813} {14, 1.1124789090383478} {15, 1.1124779408390562} {16, 1.1124736204885768} {17, 1.1124606060769275} {18, 1.1124233849016383} {19, 1.112317916515712} {20, 1.1120650704212787} {21, 1.111781922389977} {22, 1.1114987743586757} {23, 1.111215626327374} {24, 1.1109324782960726} {25, 1.110649330264771} {26, 1.1103661822334696} {27, 1.1100830342021681} {28, 1.1097998861708667} {29, 1.109658312155216} {30, 1.109658312155216} {1, 1.0004477833132321} {2, 1.116929646701363} {3, 1.1149609583759081} {4, 1.1137965370460785} {5, 1.113159486577635} {6, 1.1128257301789828} {7, 1.1126548336107795} {8, 1.112568353211563} {9, 1.1125248391126221} {10, 1.1125029959221213} {11, 1.1124920006046888} {12, 1.1124863224931625} {13, 1.1124829992296843} {14, 1.1124799689267089} {15, 1.1124745691891609} {16, 1.112460898925575} {17, 1.1124230307414427} {18, 1.1123163054447918} {19, 1.1120146223861906} {20, 1.1112916455243036} {21, 1.110482069935045} {22, 1.1096724943457865} {23, 1.1088629187565278} {24, 1.108053343167269} {25, 1.1072437675780105} {26, 1.1064341919887517} {27, 1.1056246163994934} {28, 1.1048150408102346} {29, 1.1044102530156052} {30, 1.1044102530156052} Diagonalisation. Discretization checksum [-1] (channel 1): 2.2215052611823335271347`10.*^-36 BAND="asymode" thetaCh={"0.03996561328"} Discretization (channel 1) "xitable" (channel 1) 0.7410190148 0.5959774984 0.5088460599 0.2482077253 0.1858710646 0.09316760937 0.0737625735 0.03710731104 0.02948914183 0.01483306682 0.01179471789 0.005932509535 0.004717822709 0.00237295206 0.001887121937 0.0009491818562 0.0007548441219 0.0003796809649 0.0003019307863 0.0001518859345 0.0001207615083 0.00006077583131 0.00004828754306 0.00002434418087 0.00001928818978 9.790631478e-6 7.673894918e-6 3.996177097e-6 3.01153476e-6 1.701057315e-6 1.156716177e-6 7.533529378e-7 4.843882416e-7 3.11599381e-7 1.97802248e-7 1.251423124e-7 7.912894396e-8 5.005030477e-8 3.163920723e-8 2.001023076e-8 1.264912631e-8 7.999928234e-9 "zetatable" (channel 1) -0.2547325817 0.1040814979 0.02081491539 0.08772286393 0.01129659408 0.01350854466 0.001514151051 0.002312131353 0.0002541025172 0.0004069505174 0.00004383939977 0.00007260485967 7.67157845e-6 0.00001311757673 1.35955696e-6 2.399020552e-6 2.439873678e-7 4.438766126e-7 4.434345792e-8 8.302025337e-8 8.166918627e-9 1.567915093e-8 1.530423686e-9 2.985749263e-9 2.979238372e-10 5.726842489e-10 6.598910873e-11 1.11591055e-10 2.159128539e-11 2.421397699e-11 1.264336754e-11 9.267732313e-12 1.021618393e-11 8.529700288e-12 9.713349215e-12 1.013504265e-11 9.110773847e-12 1.331659444e-11 7.783756654e-12 1.516129607e-11 6.612753689e-12 9.216575161e-12 Precision last xi:955.4726321011408 Precision last zeta: 952.7664563724987 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 41, 6}} maketable[] exnames={d, epsilon, g, Gamma, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} UpSet::write: Tag Gamma in isnumericQ[Gamma] is Protected. UpSet::write: Tag Gamma in Conjugate[Gamma] is Protected. thetaCh={"0.03996561328"} theta0Ch={"0.039965613283678224"} gammaPolCh={"0.1127894047133551"} checkdefinitions[] -> -0.6035749628077665 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{0, gammaPolCh[1]}, {gammaPolCh[1], epsilon - coefzeta[1, 0]}} dim={2, 2} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0}, {Sqrt[2]*gammaPolCh[1], epsilon, Sqrt[2]*gammaPolCh[1]}, {0, Sqrt[2]*gammaPolCh[1], 2*epsilon + U - coefzeta[1, 0]}} dim={3, 3} det[vec]=1. 1-abs=0. orthogonality check=1.2836953722228372*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{epsilon}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{epsilon + coefzeta[1, 0], -gammaPolCh[1]}, {-gammaPolCh[1], 2*epsilon + U}} dim={2, 2} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*epsilon + U + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.4250841608753804, -0.3813592283777827, -0.15, -0.07198674785743905, -0.06491952558752433, -0.05473258166118683, 0.1767193295186259, 0.22035157921419357, 0.25473258166118684, 0.4962787539653073} Lowest energies (GS shifted):{0., 0.043724932497597735, 0.27508416087538046, 0.3530974130179414, 0.3601646352878561, 0.3703515792141936, 0.6018034903940064, 0.645435740089574, 0.6798167425365673, 0.9213629148406877} Scale factor SCALE(Ninit):1.6370350019059374 Lowest energies (shifted and scaled):{0., 0.02670983359958123, 0.16803804473032674, 0.2156932579980535, 0.22001034484206514, 0.22623314637928166, 0.3676179737716967, 0.3942711911096084, 0.41527318703942345, 0.5628241997073855} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.012196`4.537762409189318} {ham, 0.0192409999999999999`3.957621382705811} {maketable, 0.31631`5.9516579156556695} {xi, 0.447374`6.102215734131325} {_, 0} data gammaPol=0.1127894047133551 "Success!"