NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Mac OS X x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m Can't load custommodels.m. Continuing. Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 2*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 2*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 2*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 2*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 2, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, U -> 2, epsilon -> -1} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0] + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=23.9588438346711 faktor=0.07229275417131806 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QS PREC=1000 Tmin=1.*^-8 Tmin=1.*^-8 ==> Nmax=39 DISCNMAX=39 mMAX=80 rho[0]=4.98981958542748 pos=0.18714623501555916 neg=0.1871462350155545 theta=0.785411164905378015274908430457088427532231758487623657036614018756742893472138398547419818607195907134155277162790298461914062499999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\ 9999999999999999999999999999999999999999999999999999999999984198266065165`1000. {1, 0.9345699830277819} {2, 1.1611670347322203} {3, 1.1838645371960796} {4, 1.187592848435125} {5, 1.1884445091293663} {6, 1.1886528333033899} {7, 1.1887046335622422} {8, 1.188717566163853} {9, 1.1887207981821464} {10, 1.1887216060301942} {11, 1.1887218078127375} {12, 1.1887218579073544} {13, 1.188721869729481} {14, 1.1887218712820145} {15, 1.188721868864138} {16, 1.1887218626476623} {17, 1.1887218498695138} {18, 1.1887218242269109} {19, 1.1887217729201331} {20, 1.188721673210189} {21, 1.1887215542293266} {22, 1.1887214352484645} {23, 1.1887213162676018} {24, 1.1887211972867398} {25, 1.188721078305877} {26, 1.188720959325015} {27, 1.1887208403441525} {28, 1.18872072136329} {29, 1.1887206321276436} {30, 1.1887206321276433} {1, 0.9345699830277819} {2, 1.1611670347322203} {3, 1.1838645371960796} {4, 1.187592848435125} {5, 1.1884445091293663} {6, 1.1886528333033899} {7, 1.1887046335622422} {8, 1.188717566163853} {9, 1.1887207981821464} {10, 1.1887216060301942} {11, 1.1887218078127375} {12, 1.1887218579073544} {13, 1.188721869729481} {14, 1.1887218712820145} {15, 1.188721868864138} {16, 1.1887218626476623} {17, 1.1887218498695138} {18, 1.1887218242269109} {19, 1.1887217729201331} {20, 1.188721673210189} {21, 1.1887215542293266} {22, 1.1887214352484645} {23, 1.1887213162676018} {24, 1.1887211972867398} {25, 1.188721078305877} {26, 1.188720959325015} {27, 1.1887208403441525} {28, 1.18872072136329} {29, 1.1887206321276436} {30, 1.1887206321276433} Diagonalisation. Discretization checksum [-1] (channel 1): 6.53186314863929945939`10.*^-38 BAND="asymode" thetaCh={"0.7854111649"} Discretization (channel 1) "xitable" (channel 1) 1.57617933 2.328832208 4.897894958 6.283720924 10.15595818 4.930883511 0.6397434634 0.4379861504 0.2151915145 0.1405772966 0.0756550389 0.04161091468 0.02309327331 0.01319584659 0.007557191792 0.00435059436 0.002508382386 0.001447283614 0.0008354674582 0.0004823153899 0.0002784659274 0.0001607708749 0.00009282180902 0.00005359064447 0.00003094067068 0.00001786360411 0.00001031356711 5.954542101e-6 3.43785664e-6 1.984848692e-6 1.145952338e-6 6.616164768e-7 3.819843487e-7 2.205386925e-7 1.273280641e-7 7.351289236e-8 4.244268612e-8 2.45042965e-8 1.41475609e-8 8.168098108e-9 "zetatable" (channel 1) -3.932612326e-15 2.047974484e-14 -2.772714749e-13 -2.079351032e-12 -3.698132751e-12 5.042867026e-12 9.990591134e-13 -6.917691388e-16 1.233482953e-15 -2.148135979e-16 -3.021132854e-15 -8.062788509e-16 -1.213060059e-16 -6.056690202e-17 -1.929485371e-17 -1.012495117e-17 -4.104433548e-18 -1.385590474e-18 -5.116704784e-19 -1.480603253e-19 -3.408882092e-20 -1.861231604e-20 -1.039783784e-21 -5.098759818e-21 1.439468981e-21 -2.293372833e-21 7.815575703e-22 -1.28525399e-21 7.026279179e-22 -8.915335209e-22 6.401645963e-22 -3.81922846e-22 -2.211665973e-22 -9.300081644e-23 -3.398092064e-23 -1.145418505e-23 -3.819711053e-24 -1.273243777e-24 -4.244146436e-25 -1.41471521e-25 Precision last xi:956.3215201911744 Precision last zeta: 939.8462130643143 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 39, 6}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma2, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.7854111649"} theta0Ch={"0.785411164905378"} gammaPolCh={"0.5000041384913823"} checkdefinitions[] -> -1.999983446034475 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{0, gammaPolCh[1]}, {gammaPolCh[1], epsilon - coefzeta[1, 0]}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=2.220446049250313*^-16 diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0}, {Sqrt[2]*gammaPolCh[1], epsilon, Sqrt[2]*gammaPolCh[1]}, {0, Sqrt[2]*gammaPolCh[1], 2*epsilon + U - coefzeta[1, 0]}} dim={3, 3} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.7763568394002505*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{epsilon}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{epsilon + coefzeta[1, 0], -gammaPolCh[1]}, {-gammaPolCh[1], 2*epsilon + U}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*epsilon + U + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-1.6180413919144667, -1.2071097075479265, -1.2071097075479198, -1., -3.932612325823522*^-15, 1.9574560834132457*^-17, 3.932612325823522*^-15, 0.20710970754792257, 0.20710970754792368, 0.6180413919144665} Lowest energies (GS shifted):{0., 0.41093168436654026, 0.4109316843665469, 0.6180413919144667, 1.6180413919144627, 1.6180413919144667, 1.6180413919144707, 1.8251510994623894, 1.8251510994623903, 2.236082783828933} Scale factor SCALE(Ninit):23.9588438346711 Lowest energies (shifted and scaled):{0., 0.017151565710022975, 0.017151565710023256, 0.02579596061392964, 0.0675342016951994, 0.06753420169519957, 0.06753420169519973, 0.07617859659910607, 0.07617859659910611, 0.09333016230912919} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} operators.m done Loading module customoperators.m Can't load customoperators.m. Continuing. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.013008`4.565755521745966} {ham, 0.0215180000000000001`4.006195646290313} {maketable, 0.28931`5.91290843879194} {xi, 0.439643`6.094645156204292} {_, 0} data gammaPol=0.5000041384913823 "Success!"