NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Mac OS X x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m Can't load custommodels.m. Continuing. Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 2*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 2*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 2*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 2*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 2, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, U -> 2, epsilon -> -1} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0] + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=13.832644937419564 faktor=0.12521472324380978 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QS PREC=1000 Tmin=1.*^-8 Tmin=1.*^-8 ==> Nmax=38 DISCNMAX=38 mMAX=80 rho[0]=4.98981958542748 pos=0.18714623501555916 neg=0.1871462350155545 theta=0.785411164905378015274908430457088427532231758487623657036614018756742893472138398547419818607195907134155277162790298461914062499999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\ 9999999999999999999999999999999999999999999999999999999999984198266065165`1000. {1, 1.0920769504518244} {2, 1.1779296824097416} {3, 1.1864095558409886} {4, 1.188163918649834} {5, 1.1885835920388537} {6, 1.188687379234105} {7, 1.1887132560757634} {8, 1.1887197209040588} {9, 1.1887213367759042} {10, 1.188721740602654} {11, 1.1887218413103682} {12, 1.188721865991172} {13, 1.1887218711692946} {14, 1.1887218704796796} {15, 1.1887218663389842} {16, 1.1887218573672296} {17, 1.1887218392511165} {18, 1.1887218029757274} {19, 1.1887217304141622} {20, 1.1887216137197576} {21, 1.1887214947388955} {22, 1.1887213757580328} {23, 1.1887212567771708} {24, 1.1887211377963085} {25, 1.188721018815446} {26, 1.188720899834584} {27, 1.1887207808537212} {28, 1.188720661872859} {29, 1.1887206321276436} {30, 1.1887206321276433} {1, 1.0920769504518244} {2, 1.1779296824097416} {3, 1.1864095558409886} {4, 1.188163918649834} {5, 1.1885835920388537} {6, 1.188687379234105} {7, 1.1887132560757634} {8, 1.1887197209040588} {9, 1.1887213367759042} {10, 1.188721740602654} {11, 1.1887218413103682} {12, 1.188721865991172} {13, 1.1887218711692946} {14, 1.1887218704796796} {15, 1.1887218663389842} {16, 1.1887218573672296} {17, 1.1887218392511165} {18, 1.1887218029757274} {19, 1.1887217304141622} {20, 1.1887216137197576} {21, 1.1887214947388955} {22, 1.1887213757580328} {23, 1.1887212567771708} {24, 1.1887211377963085} {25, 1.188721018815446} {26, 1.188720899834584} {27, 1.1887207808537212} {28, 1.188720661872859} {29, 1.1887206321276436} {30, 1.1887206321276433} Diagonalisation. Discretization checksum [-1] (channel 1): 3.77117294717669607009`10.*^-38 BAND="asymode" thetaCh={"0.7854111649"} Discretization (channel 1) "xitable" (channel 1) 1.709618992 2.529963864 3.858077692 7.106887596 3.417795296 0.7612179167 0.2760642671 0.2555293847 0.1428045272 0.07675789447 0.04109484757 0.02323256867 0.01316900563 0.007563665811 0.004350654751 0.002508750423 0.00144747545 0.0008355392718 0.0004823450899 0.0002784759394 0.0001607745156 0.00009282299226 0.00005359105935 0.00003094080606 0.00001786364903 0.00001031358377 5.954545605e-6 3.437859914e-6 1.984847894e-6 1.145953454e-6 6.616163316e-7 3.819842245e-7 2.205386791e-7 1.27328066e-7 7.351289063e-8 4.244268752e-8 2.450429541e-8 1.414756167e-8 8.16809769e-9 "zetatable" (channel 1) 4.252701361e-16 2.040048488e-14 2.811434663e-14 1.354840041e-13 -1.459216706e-13 -4.78363327e-14 1.815418409e-14 5.958343884e-15 -1.080999222e-14 -3.208162421e-15 -5.233434078e-16 -1.564659337e-16 -4.695301409e-17 -2.16770946e-17 -7.125295478e-18 -2.956360019e-18 -1.601230478e-18 -2.550649407e-19 -1.324439237e-19 2.027933533e-20 -8.108439749e-21 1.361870187e-20 1.719373304e-21 4.068311582e-21 1.061633956e-21 8.092657873e-22 5.79974894e-22 -1.875110559e-22 6.821454689e-22 -3.351058978e-22 2.198748415e-22 -1.523742249e-22 -9.687608491e-23 -3.429841855e-23 -1.145886705e-23 -3.819731089e-24 -1.273243941e-24 -4.244145844e-25 -1.414715435e-25 Precision last xi:957.198861651201 Precision last zeta: 940.741123869384 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 38, 6}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma2, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.7854111649"} theta0Ch={"0.785411164905378"} gammaPolCh={"0.5000041384913823"} checkdefinitions[] -> -1.9999834460344705 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{0, gammaPolCh[1]}, {gammaPolCh[1], epsilon - coefzeta[1, 0]}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0}, {Sqrt[2]*gammaPolCh[1], epsilon, Sqrt[2]*gammaPolCh[1]}, {0, Sqrt[2]*gammaPolCh[1], 2*epsilon + U - coefzeta[1, 0]}} dim={3, 3} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.5543122344752192*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{epsilon}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{epsilon + coefzeta[1, 0], -gammaPolCh[1]}, {-gammaPolCh[1], 2*epsilon + U}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=4.440892098500626*^-16 diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*epsilon + U + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-1.6180413919144663, -1.2071097075479236, -1.207109707547923, -1., -4.2527013609716326*^-16, -8.621789551423913*^-18, 4.2527013609716326*^-16, 0.2071097075479229, 0.20710970754792316, 0.6180413919144665} Lowest energies (GS shifted):{0., 0.4109316843665427, 0.41093168436654337, 0.6180413919144663, 1.6180413919144658, 1.6180413919144663, 1.6180413919144667, 1.8251510994623892, 1.8251510994623894, 2.236082783828933} Scale factor SCALE(Ninit):13.832644937419564 Lowest energies (shifted and scaled):{0., 0.02970738323911614, 0.02970738323911619, 0.04467991441337176, 0.1169726685846898, 0.11697266858468983, 0.11697266858468987, 0.1319451997589454, 0.13194519975894542, 0.16165258299806162} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} operators.m done Loading module customoperators.m Can't load customoperators.m. Continuing. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.014508`4.61315254040437} {ham, 0.024608`4.064470061233667} {maketable, 0.26258`5.870806637486981} {xi, 0.389418`6.041961015461711} {_, 0} data gammaPol=0.5000041384913823 "Success!"