NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.715663207404297 faktor=0.8242955588659627 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=1000 DISCNMAX=30 mMAX=80 rho[0]=0.003 pos=0.0002969999969824991 neg=0.00030299999698249903 theta=0.005996580820127257832389611369815127842916835915300258516407639020104093871353416393287399321483055881164326133976748896304732615039527544678079112445102930086083189787038311832988686583210214119366950590606341841984471244909450065\ 94479069625040763162336838811478384119899324172814744860561752267997362490013498345880905380134243093801240547117581153158137493202628144739104727027982771468021828709871494165627588919402444401848239759011357053402992283166204584107601740\ 01405382725431224457405611694249706237139273349020115064591253999056554034872799086817220705155909991026496836726961451749443376510770744687976512438962121047591490072781426810195553144841147498116386985778670041891230137747337533956173026\ 90175418953243181759354219845228635609655241119831127406386963652153728186224378228341709305329094029938251337884976371061396688839658537255588347654465951355036729792962412433095538445071841843993536535247154097691778114251890371226462163\ 1512394428157232442572888456057648630046438218170062823903782486348415347`1000. {1, 0.8068953400414524} {2, 0.9972584910586777} {3, 0.998717572186976} {4, 0.9993788219937517} {5, 0.9996941911674664} {6, 0.9998482634942647} {7, 0.9999244203652146} {8, 0.9999622818098499} {9, 0.999981158520863} {10, 0.99999058317761} {11, 0.9999952916064216} {12, 0.9999976438858624} {13, 0.9999988176204022} {14, 0.9999994000433353} {15, 0.999999976491874} {16, 0.9999999531504533} {17, 0.9999999063009128} {18, 0.9999998126018118} {19, 0.9999996252036258} {20, 0.9999992610316673} {21, 0.9999988264777505} {22, 0.9999983919238334} {23, 0.9999979573699167} {24, 0.9999975228159997} {25, 0.9999970882620829} {26, 0.9999966537081659} {27, 0.9999962191542491} {28, 0.9999957846003321} {29, 0.9999954586848946} {30, 0.9999954586848946} {1, 0.8071970270876005} {2, 1.0021484553575772} {3, 1.0011357566732124} {4, 1.0005846084370102} {5, 1.0002966725105875} {6, 1.0001494527073518} {7, 1.0000750085087176} {8, 1.0000375750092922} {9, 1.0000188048822076} {10, 1.0000094060694253} {11, 1.0000047024977283} {12, 1.0000023482248273} {13, 1.000001167576447} {14, 1.0000005705940982} {15, 0.9999999648525806} {16, 0.9999999295384542} {17, 0.9999998590769085} {18, 0.9999997181538189} {19, 0.9999994363076425} {20, 0.9999988885943739} {21, 0.9999982350269108} {22, 0.9999975814594477} {23, 0.9999969278919846} {24, 0.9999962743245214} {25, 0.9999956207570583} {26, 0.9999949671895954} {27, 0.9999943136221321} {28, 0.9999936600546689} {29, 0.9999931698790716} {30, 0.9999931698790716} rho[0]=0.05 pos=0.005025000025145842 neg=0.004975000025145842 theta=0.099943013819662681656415070159709021042326895076387155642428283797666406630395902542131968169312638732165909856880762982456835165768322856514470540617120735814336414505990260549281115012384575562804025140378456812858362088332599777\ 86079066242164177201254415655017031932684715460816637390276173558407130224179774150479621648711718864515369546150764289283908783441077983369820817332751152064897709849540998129554874566204839116534257370931679738046226840225165755729202214\ 44854940311542746903180990228820766562240291575206609972772050558093908826609235823333084362019338490066752817580294931809202333010283201338847988291789115177439105045955548799501413949775959605036883393046633049386362174414761502961518187\ 83817633134516532696930816730053287523828021655697477012586214142117934812382671689011657003388458545933093917447750331677111028404031843091644936680024862766309182239913591797127380864988377209281879179470031920920319898014722958667851234\ 8049892353916080608419036603826954708706094209408192065826436190107001083`1000. {1, 0.8071417835919039} {2, 1.0011357566775478} {3, 1.0005846084459675} {4, 1.000296672528748} {5, 1.000149452743966} {6, 1.0000750085822387} {7, 1.0000375751566104} {8, 1.0000188051771348} {9, 1.0000094066595584} {10, 1.0000047036782596} {11, 1.0000023505861795} {12, 1.000001172299429} {13, 1.0000005800403462} {14, 1.0000002777708306} {15, 0.999999967365147} {16, 0.9999999346469401} {17, 0.9999998692938847} {18, 0.9999997385877719} {19, 0.999999477175533} {20, 0.9999989691716529} {21, 0.9999983629880328} {22, 0.9999977568044128} {23, 0.999997150620793} {24, 0.999996544437173} {25, 0.9999959382535532} {26, 0.999995332069933} {27, 0.9999947258863131} {28, 0.9999941197026931} {29, 0.9999936650649781} {30, 0.9999936650649781} {1, 0.8069953178379362} {2, 0.998717572189623} {3, 0.9993788219988623} {4, 0.9996941911775021} {5, 0.9998482635142021} {6, 0.9999244204049471} {7, 0.9999622818891674} {8, 0.9999811586793516} {9, 0.9999905834944331} {10, 0.9999952922399102} {11, 0.9999976451526936} {12, 0.9999988201539236} {13, 0.9999994051102173} {14, 0.9999996925912281} {15, 0.9999999733763641} {16, 0.9999999468360834} {17, 0.999999893672166} {18, 0.9999997873443331} {19, 0.999999574688663} {20, 0.9999991614336994} {21, 0.9999986683107062} {22, 0.9999981751877132} {23, 0.99999768206472} {24, 0.9999971889417268} {25, 0.9999966958187338} {26, 0.9999962026957406} {27, 0.9999957095727475} {28, 0.9999952164497543} {29, 0.9999948466075097} {30, 0.9999948466075097} Diagonalisation. Discretization checksum [-1] (channel 1): 6.959558595918645133047371567851867`10.*^-25 Discretization checksum [-1] (channel 2): 6.959767984479757379152647493488404`10.*^-25 BAND="asymode" thetaCh={"0.00599658082", "0.09994301382"} Discretization (channel 1) "xitable" (channel 1) 0.5697372092 0.5417779095 0.5906662648 0.5166546726 0.3414089877 0.2217216242 0.1529945312 0.1075832002 0.07593435982 0.05365230704 0.03792429061 0.02681185497 0.01895721404 0.01340419864 0.009477996336 0.006701882444 0.004738921281 0.003350913628 0.002369451019 0.001675453151 0.001184724404 0.0008377259472 0.0005923621723 0.0004188627393 0.0002961811746 0.0002094312188 0.0001480906282 0.0001047155659 0.00007404522199 0.0000523577865 0.00003702256657 "zetatable" (channel 1) -0.06609675742 0.008607350554 -0.008706378236 0.0125916667 0.0258900344 0.01274279886 0.005334335889 0.002592569112 0.001325062839 0.0006828563744 0.0003523254067 0.0001817475642 0.00009369681526 0.00004826747494 0.00002484519383 0.00001277884059 6.567670095e-6 3.372999189e-6 1.731089172e-6 8.878423344e-7 4.55072042e-7 2.331088047e-7 1.193460023e-7 6.106149772e-8 3.123551124e-8 1.595749414e-8 8.162020432e-9 4.167480181e-9 2.109944349e-9 1.122415774e-9 5.835309232e-10 Precision last xi:969.7968279912616 Precision last zeta: 965.164607929799 Discretization (channel 2) "xitable" (channel 2) 0.5726028298 0.5413437247 0.5909638155 0.5163145854 0.3408501854 0.2215216229 0.1529311429 0.1075603824 0.07592583057 0.05364910739 0.03792309104 0.02681140718 0.01895704637 0.01340413695 0.0094779728 0.006701874438 0.004738917703 0.003350913025 0.002369450183 0.001675453561 0.001184723945 0.0008377264913 0.0005923617716 0.0004188632862 0.0002961808129 0.0002094317083 0.0001480903809 0.000104715874 0.00007404523433 0.0000523579344 0.0000370226376 "zetatable" (channel 2) 0.03304853177 -0.004590071503 0.004371524156 -0.006263717022 -0.01281806441 -0.006308952341 -0.002650848975 -0.001291548786 -0.0006609130496 -0.0003408136296 -0.0001759083326 -0.00009076099328 -0.0000467959375 -0.00002410855312 -0.00001241029552 -6.383342055e-6 -3.280819382e-6 -1.684995085e-6 -8.647953519e-7 -4.435458168e-7 -2.273492702e-7 -1.164604721e-7 -5.962647177e-8 -3.050718851e-8 -1.560619451e-8 -7.972822964e-9 -4.078150287e-9 -2.082254826e-9 -1.054263429e-9 -5.608461858e-10 -2.915919826e-10 Precision last xi:969.8322250673335 Precision last zeta: 964.8987135760925 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.00599658082", "0.09994301382"} theta0Ch={"0.005996580820127258", "0.09994301381966268"} gammaPolCh={"0.04368948338383746", "0.1783615691616382"} checkdefinitions[] -> 0.32757799226700657 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, 0, gammaPolCh[2], 0}, {0, (coefzeta[1, 0] - coefzeta[2, 0])/2, 0, gammaPolCh[1]}, {gammaPolCh[2], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {0, gammaPolCh[1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[2], gammaPolCh[1], 0, 0}, {0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, 0, 0, 0, 0}, {-gammaPolCh[2], 0, (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -gammaPolCh[1]}, {gammaPolCh[1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, 0, gammaPolCh[2]}, {0, 0, 0, 0, (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0}, {0, 0, -gammaPolCh[1], gammaPolCh[2], 0, 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=3.941291737419306*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[1], 0}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[2]}, {-gammaPolCh[1], 0, (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, 0}, {0, -gammaPolCh[2], 0, (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=2.220446049250313*^-16 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24747680907160519, -0.22395534065306133, -0.16015927847143158, -0.136694113695145, -0.07730476739512503, -0.07457264459621651, -0.05909012044109967, -0.016524112823944778, 0.016524112823944778, 0.019256235622853304, 0.024572644596216508, 0.06713865221337141, 0.11308401008898568, 0.13285858323290006, 0.20125603589159294, 0.22108691267776473} Lowest energies (GS shifted):{0., 0.023521468418543856, 0.08731753060017361, 0.11078269537646018, 0.17017204167648015, 0.17290416447538867, 0.1883866886305055, 0.2309526962476604, 0.26400092189554997, 0.26673304469445847, 0.2720494536678217, 0.3146154612849766, 0.36056081916059085, 0.38033539230450525, 0.4487328449631981, 0.4685637217493699} Scale factor SCALE(Ninit):1.715663207404297 Lowest energies (shifted and scaled):{0., 0.013709840204669616, 0.05089433067244018, 0.06457135345582671, 0.09918732356214655, 0.10077978226098527, 0.10980400338334706, 0.134614238535242, 0.15387689189591508, 0.1554693505947538, 0.15856809920136794, 0.1833783343532629, 0.2101582744238593, 0.22168418059155767, 0.2615506604248429, 0.27310938401382445} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004269`4.081871148299922} {ham, 0.0405139999999999999`4.360180112920386} {maketable, 0.52817`6.174318723186893} {xi, 0.581859`6.216362749725157} {_, 0} data gammaPol=0.043689483383837456 "Success!"