NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.4426950408889634 faktor=0.9802581434685472 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=1000 DISCNMAX=30 mMAX=80 rho[0]=0.003 pos=0.0002969999969824991 neg=0.00030299999698249903 theta=0.005996580820127257832389611369815127842916835915300258516407639020104093871353416393287399321483055881164326133976748896304732615039527544678079112445102930086083189787038311832988686583210214119366950590606341841984471244909450065\ 94479069625040763162336838811478384119899324172814744860561752267997362490013498345880905380134243093801240547117581153158137493202628144739104727027982771468021828709871494165627588919402444401848239759011357053402992283166204584107601740\ 01405382725431224457405611694249706237139273349020115064591253999056554034872799086817220705155909991026496836726961451749443376510770744687976512438962121047591490072781426810195553144841147498116386985778670041891230137747337533956173026\ 90175418953243181759354219845228635609655241119831127406386963652153728186224378228341709305329094029938251337884976371061396688839658537255588347654465951355036729792962412433095538445071841843993536535247154097691778114251890371226462163\ 1512394428157232442572888456057648630046438218170062823903782486348415347`1000. {1, 0.9029186982115621} {2, 0.997744088931949} {3, 0.9989325642573903} {4, 0.9994802386398544} {5, 0.9997434747154443} {6, 0.9998725601913221} {7, 0.9999364837788851} {8, 0.9999682924257651} {9, 0.9999841585311724} {10, 0.9999920817700154} {11, 0.9999960403679723} {12, 0.9999980177694462} {13, 0.999999003710771} {14, 0.9999995031666709} {15, 0.9999999721430951} {16, 0.9999999442861882} {17, 0.9999998885723721} {18, 0.9999997771447426} {19, 0.9999995542894883} {20, 0.9999991523931883} {21, 0.9999987178392714} {22, 0.9999982832853546} {23, 0.9999978487314375} {24, 0.9999974141775207} {25, 0.9999969796236039} {26, 0.999996545069687} {27, 0.99999611051577} {28, 0.9999956759618531} {29, 0.9999954586848947} {30, 0.9999954586848947} {1, 0.904849982674388} {2, 1.001838328714635} {3, 1.0009638322618077} {4, 1.0004939095189969} {5, 1.0002500653240103} {6, 1.000125824890554} {7, 1.0000631122652421} {8, 1.0000316061093077} {9, 1.000015815149104} {10, 1.0000079097428543} {11, 1.000003953695711} {12, 1.0000019731172713} {13, 1.000000978752378} {14, 1.0000004619325098} {15, 0.9999999581033169} {16, 0.9999999162066282} {17, 0.9999998324132539} {18, 0.9999996648265208} {19, 0.9999993296530414} {20, 0.9999987252025084} {21, 0.9999980716350453} {22, 0.9999974180675821} {23, 0.9999967645001191} {24, 0.999996110932656} {25, 0.9999954573651928} {26, 0.9999948037977296} {27, 0.9999941502302666} {28, 0.9999934966628035} {29, 0.9999931698790718} {30, 0.9999931698790718} rho[0]=0.05 pos=0.005025000025145842 neg=0.004975000025145842 theta=0.099943013819662681656415070159709021042326895076387155642428283797666406630395902542131968169312638732165909856880762982456835165768322856514470540617120735814336414505990260549281115012384575562804025140378456812858362088332599777\ 86079066242164177201254415655017031932684715460816637390276173558407130224179774150479621648711718864515369546150764289283908783441077983369820817332751152064897709849540998129554874566204839116534257370931679738046226840225165755729202214\ 44854940311542746903180990228820766562240291575206609972772050558093908826609235823333084362019338490066752817580294931809202333010283201338847988291789115177439105045955548799501413949775959605036883393046633049386362174414761502961518187\ 83817633134516532696930816730053287523828021655697477012586214142117934812382671689011657003388458545933093917447750331677111028404031843091644936680024862766309182239913591797127380864988377209281879179470031920920319898014722958667851234\ 8049892353916080608419036603826954708706094209408192065826436190107001083`1000. {1, 0.9044894733003968} {2, 1.0009638322670265} {3, 1.0004939095296812} {4, 1.0002500653456714} {5, 1.0001258249341523} {6, 1.0000631123527213} {7, 1.0000316062845551} {8, 1.0000158154998857} {9, 1.000007910444697} {10, 1.0000039550996613} {11, 1.0000019759254575} {12, 1.0000009843690354} {13, 1.000000484910792} {14, 1.0000002220138526} {15, 0.9999999611408394} {16, 0.9999999222816776} {17, 0.99999984456336} {18, 0.9999996891267156} {19, 0.9999993782534244} {20, 0.999998817625748} {21, 0.9999982114421281} {22, 0.9999976052585081} {23, 0.9999969990748881} {24, 0.9999963928912681} {25, 0.9999957867076481} {26, 0.9999951805240284} {27, 0.9999945743404083} {28, 0.9999939681567883} {29, 0.9999936650649783} {30, 0.9999936650649783} {1, 0.9035486007990047} {2, 0.9989325642605026} {3, 0.9994802386458977} {4, 0.9997434747273531} {5, 0.9998725602150077} {6, 0.9999364838261061} {7, 0.999968292520065} {8, 0.9999841587196163} {9, 0.9999920821467523} {10, 0.9999960411212943} {11, 0.9999980192759486} {12, 0.9999990067236209} {13, 0.9999994974469407} {14, 0.9999997427448322} {15, 0.9999999683885454} {16, 0.9999999367770913} {17, 0.9999998735541828} {18, 0.9999997471083649} {19, 0.9999994942167353} {20, 0.9999990381529512} {21, 0.999998545029958} {22, 0.999998051906965} {23, 0.9999975587839718} {24, 0.9999970656609788} {25, 0.9999965725379856} {26, 0.9999960794149926} {27, 0.9999955862919994} {28, 0.9999950931690064} {29, 0.9999948466075098} {30, 0.9999948466075098} Diagonalisation. Discretization checksum [-1] (channel 1): 5.852267875056163552898573002593496`10.*^-25 Discretization checksum [-1] (channel 2): 5.852443949146597973984195876608986`10.*^-25 BAND="asymode" thetaCh={"0.00599658082", "0.09994301382"} Discretization (channel 1) "xitable" (channel 1) 0.5909823141 0.5606036339 0.5067810044 0.3767517439 0.2587908346 0.1804342965 0.1273564355 0.09008848667 0.06372753334 0.04507281638 0.03187529119 0.02254067582 0.01593917646 0.01127087893 0.007969778381 0.005635505748 0.003984912534 0.002817760778 0.001992459221 0.001408881182 0.0009962300835 0.0007044405234 0.0004981152075 0.0003522201026 0.0002490577077 0.0001761099251 0.0001245288728 0.0000880549453 0.00006226432229 0.0000440274765 0.00003113214816 "zetatable" (channel 1) -0.06860317488 0.008422930198 0.008485986551 0.01901694093 0.01375039556 0.006919501188 0.00349614361 0.001812156854 0.000941392919 0.0004878800078 0.000252300693 0.0001302622813 0.00006716874557 0.00003459844604 0.00001780504174 9.155132729e-6 4.703790659e-6 2.414991558e-6 1.239037472e-6 6.352888655e-7 3.255302725e-7 1.667057288e-7 8.532732222e-8 4.364509418e-8 2.232138958e-8 1.140110317e-8 5.828869646e-9 2.978716067e-9 1.508993693e-9 8.010656837e-10 4.159087779e-10 Precision last xi:969.6972370228938 Precision last zeta: 964.9932077342241 Discretization (channel 2) "xitable" (channel 2) 0.5939644254 0.5602139497 0.5065701793 0.3763230628 0.2585481343 0.1803402828 0.1273208117 0.09007489415 0.0637223741 0.04507087135 0.0318745605 0.02254040327 0.0159390742 0.01127084161 0.007969763911 0.005635501107 0.003984910202 0.002817760636 0.001992458555 0.001408881654 0.000996229648 0.0007044410739 0.0004981148144 0.0003522206422 0.0002490573628 0.0001761103868 0.0001245286713 0.00008805520173 0.00006226439112 0.00004402759832 0.00003113220034 "zetatable" (channel 2) 0.0343013957 -0.004514382786 -0.004159654508 -0.009422212308 -0.006811922913 -0.003435766325 -0.001740209125 -0.0009033532775 -0.0004696747916 -0.0002435252832 -0.000125969744 -0.00006504817572 -0.00003354490159 -0.00001728002287 -8.89307162e-6 -4.572877448e-6 -2.349563881e-6 -1.206331028e-6 -6.189384368e-7 -3.173535296e-7 -1.626204357e-7 -8.3280035e-8 -4.262761323e-8 -2.18042741e-8 -1.115174163e-8 -5.695957798e-9 -2.912219857e-9 -1.488210059e-9 -7.539467781e-10 -4.002561027e-10 -2.078209914e-10 Precision last xi:969.7298081184373 Precision last zeta: 964.724467702295 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.00599658082", "0.09994301382"} theta0Ch={"0.005996580820127258", "0.09994301381966268"} gammaPolCh={"0.04368948338383746", "0.1783615691616382"} checkdefinitions[] -> 0.3269512155032393 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, 0, gammaPolCh[2], 0}, {0, (coefzeta[1, 0] - coefzeta[2, 0])/2, 0, gammaPolCh[1]}, {gammaPolCh[2], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {0, gammaPolCh[1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=0.9999999999999998 1-abs=2.220446049250313*^-16 orthogonality check=6.661338147750939*^-16 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[2], gammaPolCh[1], 0, 0}, {0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, 0, 0, 0, 0}, {-gammaPolCh[2], 0, (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -gammaPolCh[1]}, {gammaPolCh[1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, 0, gammaPolCh[2]}, {0, 0, 0, 0, (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0}, {0, 0, -gammaPolCh[1], gammaPolCh[2], 0, 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.942091015256665*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[1], 0}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[2]}, {-gammaPolCh[1], 0, (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, 0}, {0, -gammaPolCh[2], 0, (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=0.9999999999999998 1-abs=2.220446049250313*^-16 orthogonality check=0. diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24834481999692937, -0.2252237787270647, -0.159007740962756, -0.13594307056552898, -0.07847774131187844, -0.07645228528880724, -0.05937398133715058, -0.017150889587712038, 0.017150889587712038, 0.01917634561078323, 0.026452285288807238, 0.06867537703824578, 0.11241919011350651, 0.13162060385054536, 0.20261091583927526, 0.22186870044895213} Lowest energies (GS shifted):{0., 0.023121041269864667, 0.08933707903417337, 0.11240174943140038, 0.1698670786850509, 0.17189253470812213, 0.1889708386597788, 0.23119393040921732, 0.2654957095846414, 0.2675211656077126, 0.2747971052857366, 0.31702019703517514, 0.3607640101104359, 0.3799654238474747, 0.45095573583620463, 0.4702135204458815} Scale factor SCALE(Ninit):1.4426950408889634 Lowest energies (shifted and scaled):{0., 0.01602628456781683, 0.061923744451998275, 0.07791095570838061, 0.11774288666049741, 0.1191468257922374, 0.13098460402507398, 0.16025142102572118, 0.18402760254935624, 0.18543154168109618, 0.19047483875484275, 0.21974165575548998, 0.25006255645554826, 0.2633719622501417, 0.31257869685220074, 0.32592717595822895} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004375`4.092523050854307} {ham, 0.038188`4.33450190305282} {maketable, 0.485734`6.137943497412873} {xi, 0.524745`6.171493302622248} {_, 0} data gammaPol=0.043689483383837456 "Success!"