NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.2131570881878404 faktor=1.1657299587521546 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=1000 DISCNMAX=30 mMAX=80 rho[0]=0.003 pos=0.0002969999969824991 neg=0.00030299999698249903 theta=0.005996580820127257832389611369815127842916835915300258516407639020104093871353416393287399321483055881164326133976748896304732615039527544678079112445102930086083189787038311832988686583210214119366950590606341841984471244909450065\ 94479069625040763162336838811478384119899324172814744860561752267997362490013498345880905380134243093801240547117581153158137493202628144739104727027982771468021828709871494165627588919402444401848239759011357053402992283166204584107601740\ 01405382725431224457405611694249706237139273349020115064591253999056554034872799086817220705155909991026496836726961451749443376510770744687976512438962121047591490072781426810195553144841147498116386985778670041891230137747337533956173026\ 90175418953243181759354219845228635609655241119831127406386963652153728186224378228341709305329094029938251337884976371061396688839658537255588347654465951355036729792962412433095538445071841843993536535247154097691778114251890371226462163\ 1512394428157232442572888456057648630046438218170062823903782486348415347`1000. {1, 0.9703628824397438} {2, 0.9981366152651787} {3, 0.9991100001661257} {4, 0.9995647459922666} {5, 0.9997847310816478} {6, 0.9998929455851747} {7, 0.9999466165610512} {8, 0.9999733439093065} {9, 0.9999866805041999} {10, 0.9999933417077735} {11, 0.9999966698586747} {12, 0.9999983319629222} {13, 0.9999991598048298} {14, 0.9999996908888098} {15, 0.9999999668723699} {16, 0.9999999337447419} {17, 0.9999998674894689} {18, 0.9999997349789418} {19, 0.9999994699578899} {20, 0.999999043754709} {21, 0.9999986092007921} {22, 0.9999981746468752} {23, 0.9999977400929584} {24, 0.9999973055390414} {25, 0.9999968709851246} {26, 0.9999964364312077} {27, 0.9999960018772908} {28, 0.9999955673233739} {29, 0.9999954586848946} {30, 0.9999954586848946} {1, 0.9749825325715069} {2, 1.0015689882624523} {3, 1.00081679535066} {4, 1.000416977359229} {5, 1.000210701214745} {6, 1.000105912442826} {7, 1.000053097668526} {8, 1.000026584081538} {9, 1.0000133003595544} {10, 1.0000066512400847} {11, 1.0000033238419952} {12, 1.00000165738952} {13, 1.0000008193876986} {14, 1.0000002676232094} {15, 0.9999999501761656} {16, 0.9999999003523302} {17, 0.9999998007046527} {18, 0.9999996014093124} {19, 0.9999992028186258} {20, 0.9999985618106426} {21, 0.9999979082431794} {22, 0.9999972546757163} {23, 0.9999966011082532} {24, 0.9999959475407901} {25, 0.999995293973327} {26, 0.9999946404058638} {27, 0.9999939868384007} {28, 0.9999933332709376} {29, 0.9999931698790718} {30, 0.9999931698790718} rho[0]=0.05 pos=0.005025000025145842 neg=0.004975000025145842 theta=0.099943013819662681656415070159709021042326895076387155642428283797666406630395902542131968169312638732165909856880762982456835165768322856514470540617120735814336414505990260549281115012384575562804025140378456812858362088332599777\ 86079066242164177201254415655017031932684715460816637390276173558407130224179774150479621648711718864515369546150764289283908783441077983369820817332751152064897709849540998129554874566204839116534257370931679738046226840225165755729202214\ 44854940311542746903180990228820766562240291575206609972772050558093908826609235823333084362019338490066752817580294931809202333010283201338847988291789115177439105045955548799501413949775959605036883393046633049386362174414761502961518187\ 83817633134516532696930816730053287523828021655697477012586214142117934812382671689011657003388458545933093917447750331677111028404031843091644936680024862766309182239913591797127380864988377209281879179470031920920319898014722958667851234\ 8049892353916080608419036603826954708706094209408192065826436190107001083`1000. {1, 0.9740945812325732} {2, 1.0008167953569} {3, 1.0004169773719864} {4, 1.0002107012405461} {5, 1.00010591249473} {6, 1.0000530977726094} {7, 1.0000265842899934} {8, 1.0000133007767615} {9, 1.0000066520747652} {10, 1.0000033255116383} {11, 1.0000016607290887} {12, 1.0000008260671245} {13, 1.0000004043776358} {14, 1.000000123163301} {15, 0.9999999537884087} {16, 0.999999907576816} {17, 0.999999815153644} {18, 0.9999996303072763} {19, 0.9999992606145478} {20, 0.999998666079843} {21, 0.999998059896223} {22, 0.9999974537126031} {23, 0.9999968475289831} {24, 0.9999962413453631} {25, 0.9999956351617432} {26, 0.9999950289781233} {27, 0.9999944227945033} {28, 0.9999938166108834} {29, 0.9999936650649783} {30, 0.9999936650649783} {1, 0.9718329899397699} {2, 0.9991100001697859} {3, 0.9995647459994262} {4, 0.9997847310957859} {5, 0.9998929456133164} {6, 0.9999466166171826} {7, 0.9999733440214187} {8, 0.9999866807282679} {9, 0.9999933421557636} {10, 0.9999966707544976} {11, 0.9999983337544369} {12, 0.9999991633877029} {13, 0.999999574653925} {14, 0.9999998349315574} {15, 0.9999999624074358} {16, 0.9999999248148679} {17, 0.9999998496297374} {18, 0.9999996992594681} {19, 0.9999993985189451} {20, 0.9999989148722029} {21, 0.9999984217492097} {22, 0.9999979286262167} {23, 0.9999974355032235} {24, 0.9999969423802305} {25, 0.9999964492572373} {26, 0.9999959561342442} {27, 0.9999954630112512} {28, 0.999994969888258} {29, 0.9999948466075097} {30, 0.9999948466075097} Diagonalisation. Discretization checksum [-1] (channel 1): 4.921151077239201324901683110511652`10.*^-25 Discretization checksum [-1] (channel 2): 4.921299137310666687942578052216484`10.*^-25 BAND="asymode" thetaCh={"0.00599658082", "0.09994301382"} Discretization (channel 1) "xitable" (channel 1) 0.5832220806 0.5063486659 0.4067244406 0.2953856416 0.2103885006 0.1499266496 0.106586969 0.07559139085 0.05353238166 0.03788210887 0.02679698001 0.01895196066 0.01340234334 0.009477339717 0.006701651209 0.004738838657 0.003350885294 0.002369440125 0.001675450175 0.001184722479 0.0008377261354 0.0005923613788 0.0004188633014 0.0002961805645 0.0002094317478 0.0001480901844 0.0001047158599 0.000074045089 0.00005235782413 0.00003702255027 0.00002617891525 "zetatable" (channel 1) -0.06793025969 0.01486737184 0.01463248844 0.01412960207 0.008558487041 0.004630569546 0.002472246817 0.001304088557 0.000681152039 0.0003536534402 0.0001829664411 0.00009444867114 0.00004868003025 0.00002506092683 0.00001288912904 6.623447291e-6 3.401044868e-6 1.745155244e-6 8.948863482e-7 4.58594269e-7 2.348756104e-7 1.202216761e-7 6.151073806e-8 3.144528586e-8 1.607922438e-8 8.210418502e-9 4.185208573e-9 2.163054087e-9 1.104000857e-9 5.752706586e-10 2.947514276e-10 Precision last xi:969.6125519308679 Precision last zeta: 964.8342371859183 Discretization (channel 2) "xitable" (channel 2) 0.5861865401 0.5058693289 0.4063867329 0.2951073734 0.2102544782 0.1498714732 0.1065651344 0.07558295117 0.05352916803 0.03788089746 0.02679652514 0.0189517915 0.01340227973 0.009477316814 0.006701642104 0.004738836008 0.003350883702 0.002369440257 0.001675449611 0.001184722988 0.0008377257156 0.0005923619303 0.0004188629181 0.00029618109 0.0002094314311 0.0001480906012 0.0001047157235 0.00007404530248 0.00005235791331 0.0000370226478 0.00002617895338 "zetatable" (channel 2) 0.03396484203 -0.007702481236 -0.007214519073 -0.006998794245 -0.004244886105 -0.002302029968 -0.001231265044 -0.0006501952366 -0.0003398262866 -0.0001765020816 -0.00009133496641 -0.00004715406217 -0.0000243059382 -0.00001251370365 -6.436265243e-6 -3.307591511e-6 -1.698464012e-6 -8.715483068e-7 -4.46930047e-7 -2.290398598e-7 -1.173097932e-7 -6.004641917e-8 -3.072347061e-8 -1.570648409e-8 -8.031685427e-9 -4.101152236e-9 -2.09063911e-9 -1.08051725e-9 -5.515121256e-10 -2.87392239e-10 -1.472579494e-10 Precision last xi:969.6453709730682 Precision last zeta: 964.5656771545271 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.00599658082", "0.09994301382"} theta0Ch={"0.005996580820127258", "0.09994301381966268"} gammaPolCh={"0.04368948338383746", "0.1783615691616382"} checkdefinitions[] -> 0.32711939625968356 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, 0, gammaPolCh[2], 0}, {0, (coefzeta[1, 0] - coefzeta[2, 0])/2, 0, gammaPolCh[1]}, {gammaPolCh[2], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {0, gammaPolCh[1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=0. diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[2], gammaPolCh[1], 0, 0}, {0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, 0, 0, 0, 0}, {-gammaPolCh[2], 0, (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -gammaPolCh[1]}, {gammaPolCh[1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, 0, gammaPolCh[2]}, {0, 0, 0, 0, (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0}, {0, 0, -gammaPolCh[1], gammaPolCh[2], 0, 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1. 1-abs=0. orthogonality check=3.4416913763379853*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[1], 0}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[2]}, {-gammaPolCh[1], 0, (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, 0}, {0, -gammaPolCh[2], 0, (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24810975887673398, -0.22488301418308557, -0.15931667925883175, -0.13614628711905477, -0.07816016497857357, -0.07594755085726848, -0.05929672330386321, -0.016982708831267793, 0.016982708831267793, 0.01919532295257288, 0.02594755085726848, 0.06826156532986388, 0.11259915066748391, 0.1319527544945493, 0.20224693894736803, 0.22165689532830482} Lowest energies (GS shifted):{0., 0.02322674469364841, 0.08879307961790223, 0.1119634717576792, 0.1699495938981604, 0.1721622080194655, 0.18881303557287077, 0.2311270500454662, 0.26509246770800177, 0.26730508182930685, 0.27405730973400244, 0.31637132420659786, 0.36070890954421786, 0.3800625133712833, 0.45035669782410204, 0.4697666542050388} Scale factor SCALE(Ninit):1.2131570881878404 Lowest energies (shifted and scaled):{0., 0.01914570249788795, 0.07319174118706864, 0.09229099252506962, 0.14008869548132752, 0.14191254347500343, 0.1556377466787184, 0.19051700088626888, 0.2185145438205245, 0.2203383918142004, 0.2259042232884918, 0.26078347749604225, 0.29733075218068306, 0.31328384186338437, 0.3712270259219477, 0.38722656676453593} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004345`4.089534774280658} {ham, 0.044134`4.397348279834029} {maketable, 0.511432`6.160332891587216} {xi, 0.616383`6.241395645755197} {_, 0} data gammaPol=0.043689483383837456 "Success!"