NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0201394465967895 faktor=1.3862943611198906 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=1000 DISCNMAX=30 mMAX=80 rho[0]=0.003 pos=0.0002969999969824991 neg=0.00030299999698249903 theta=0.005996580820127257832389611369815127842916835915300258516407639020104093871353416393287399321483055881164326133976748896304732615039527544678079112445102930086083189787038311832988686583210214119366950590606341841984471244909450065\ 94479069625040763162336838811478384119899324172814744860561752267997362490013498345880905380134243093801240547117581153158137493202628144739104727027982771468021828709871494165627588919402444401848239759011357053402992283166204584107601740\ 01405382725431224457405611694249706237139273349020115064591253999056554034872799086817220705155909991026496836726961451749443376510770744687976512438962121047591490072781426810195553144841147498116386985778670041891230137747337533956173026\ 90175418953243181759354219845228635609655241119831127406386963652153728186224378228341709305329094029938251337884976371061396688839658537255588347654465951355036729792962412433095538445071841843993536535247154097691778114251890371226462163\ 1512394428157232442572888456057648630046438218170062823903782486348415347`1000. {1, 0.9966514426797723} {2, 0.9984560926128664} {3, 0.9992568961538971} {4, 0.9996352677176403} {5, 0.9998192927020136} {6, 0.9999100554346257} {7, 0.9999551292008293} {8, 0.9999775896840664} {9, 0.9999888006982696} {10, 0.99999440100384} {11, 0.9999971990494994} {12, 0.9999985959298884} {13, 0.9999992906028806} {14, 0.9999999318605948} {15, 0.9999999606043857} {16, 0.9999999212087757} {17, 0.9999998424175337} {18, 0.9999996848350734} {19, 0.9999993696701466} {20, 0.9999989351162296} {21, 0.9999985005623128} {22, 0.9999980660083959} {23, 0.999997631454479} {24, 0.9999971969005621} {25, 0.9999967623466453} {26, 0.9999963277927284} {27, 0.9999958932388114} {28, 0.9999954586848946} {29, 0.9999954586848946} {30, 0.9999954586848946} {1, 1.0025022573952087} {2, 1.0013361749299254} {3, 1.0006913675414395} {4, 1.0003518104103124} {5, 1.0001774775103227} {6, 1.0000891369977671} {7, 1.0000446685732172} {8, 1.0000223590854207} {9, 1.0000111851455535} {10, 1.0000055927598694} {11, 1.0000027939968086} {12, 1.0000013915423154} {13, 1.0000006846862914} {14, 1.0000000188142184} {15, 0.9999999407491402} {16, 0.9999998814982806} {17, 0.9999997629965558} {18, 0.9999995259931175} {19, 0.9999990519862397} {20, 0.9999983984187766} {21, 0.9999977448513135} {22, 0.9999970912838504} {23, 0.9999964377163872} {24, 0.9999957841489242} {25, 0.9999951305814611} {26, 0.999994477013998} {27, 0.9999938234465349} {28, 0.9999931698790717} {29, 0.9999931698790717} {30, 0.9999931698790717} rho[0]=0.05 pos=0.005025000025145842 neg=0.004975000025145842 theta=0.099943013819662681656415070159709021042326895076387155642428283797666406630395902542131968169312638732165909856880762982456835165768322856514470540617120735814336414505990260549281115012384575562804025140378456812858362088332599777\ 86079066242164177201254415655017031932684715460816637390276173558407130224179774150479621648711718864515369546150764289283908783441077983369820817332751152064897709849540998129554874566204839116534257370931679738046226840225165755729202214\ 44854940311542746903180990228820766562240291575206609972772050558093908826609235823333084362019338490066752817580294931809202333010283201338847988291789115177439105045955548799501413949775959605036883393046633049386362174414761502961518187\ 83817633134516532696930816730053287523828021655697477012586214142117934812382671689011657003388458545933093917447750331677111028404031843091644936680024862766309182239913591797127380864988377209281879179470031920920319898014722958667851234\ 8049892353916080608419036603826954708706094209408192065826436190107001083`1000. {1, 1.0013348594771612} {2, 1.0006913675489255} {3, 1.000351810425532} {4, 1.0001774775410675} {5, 1.0000891370595468} {6, 1.0000446686970528} {7, 1.0000223593333732} {8, 1.0000111856417524} {9, 1.0000055937525325} {10, 1.0000027959824136} {11, 1.0000013955138094} {12, 1.0000006926295655} {13, 1.0000003360168739} {14, 0.9999999967424942} {15, 0.9999999450448479} {16, 0.9999998900896945} {17, 0.9999997801793991} {18, 0.9999995603587816} {19, 0.9999991207175578} {20, 0.9999985145339378} {21, 0.9999979083503179} {22, 0.9999973021666979} {23, 0.9999966959830779} {24, 0.9999960897994581} {25, 0.9999954836158381} {26, 0.9999948774322182} {27, 0.9999942712485982} {28, 0.9999936650649782} {29, 0.9999936650649782} {30, 0.9999936650649782} {1, 0.9984548506801184} {2, 0.9992568961582313} {3, 0.9996352677261061} {4, 0.9998192927188082} {5, 0.9999100554680611} {6, 0.9999551292675454} {7, 0.99997758981736} {8, 0.9999888009647063} {9, 0.9999944015365644} {10, 0.9999972001147995} {11, 0.9999985980603404} {12, 0.9999992948636268} {13, 0.9999996390557002} {14, 0.9999999534267687} {15, 0.999999955294653} {16, 0.9999999105893063} {17, 0.9999998211786122} {18, 0.99999964235722} {19, 0.9999992847144475} {20, 0.9999987915914544} {21, 0.9999982984684613} {22, 0.9999978053454682} {23, 0.9999973122224752} {24, 0.9999968190994821} {25, 0.999996325976489} {26, 0.9999958328534959} {27, 0.9999953397305028} {28, 0.9999948466075097} {29, 0.9999948466075097} {30, 0.9999948466075097} Diagonalisation. Discretization checksum [-1] (channel 1): 4.138178299772400088321950359438746`10.*^-25 Discretization checksum [-1] (channel 2): 4.138302802955737520893085453249925`10.*^-25 BAND="asymode" thetaCh={"0.00599658082", "0.09994301382"} Discretization (channel 1) "xitable" (channel 1) 0.5415327242 0.4164315384 0.3223653031 0.2405081109 0.1750221053 0.1256081533 0.08948872072 0.06351779583 0.04499901564 0.03184925635 0.02253148212 0.0159359269 0.01126973123 0.007969371791 0.005635362885 0.003984861149 0.002817743488 0.001992452232 0.001408879585 0.0009962286476 0.000704440881 0.0004981144811 0.0003522206742 0.000249057128 0.0001761104157 0.0001245284959 0.0000880551562 0.00006226425092 0.00004402749837 0.00003113213405 0.00002201375856 "zetatable" (channel 1) -0.0629615649 0.02210697426 0.01322447329 0.009287724359 0.005746025135 0.003265225269 0.001771684178 0.0009382419362 0.0004905664578 0.0002547361816 0.0001317616518 0.00006799118898 0.00003502843226 0.0000180248941 9.266300636e-6 4.759701996e-6 2.44302734e-6 1.253077328e-6 6.423158566e-7 3.290412766e-7 1.684683416e-7 8.619874932e-8 4.409472809e-8 2.252919923e-8 1.152235955e-8 5.883102881e-9 2.982387641e-9 1.577555057e-9 8.172096339e-10 4.10894485e-10 2.049550063e-10 Precision last xi:969.5613755723667 Precision last zeta: 964.7005202568558 Discretization (channel 2) "xitable" (channel 2) 0.5442630714 0.4158115863 0.3220631645 0.2403395235 0.1749425893 0.1255744947 0.0894752821 0.06351259604 0.04499703673 0.03184851148 0.02253120254 0.01593582334 0.0112696921 0.007969357993 0.005635357161 0.003984859753 0.002817742359 0.001992452534 0.001408879085 0.0009962291784 0.0007044404723 0.0004981150311 0.0003522203017 0.0002490576361 0.0001761101328 0.0001245288596 0.00008805509335 0.00006226442863 0.00004402758517 0.00003113220947 0.00002201378621 "zetatable" (channel 2) 0.03148120702 -0.01125485712 -0.006519487555 -0.004601612785 -0.002854201687 -0.001625193396 -0.0008830041714 -0.0004679997199 -0.000244813376 -0.0001271592789 -0.00006578373427 -0.00003394904514 -0.00001749149331 -9.001227953e-6 -4.627583821e-6 -2.37707578e-6 -1.220130739e-6 -6.258466185e-7 -3.208130802e-7 -1.643475747e-7 -8.414816224e-8 -4.305601838e-8 -2.202594827e-8 -1.125371706e-8 -5.755864149e-9 -2.938820735e-9 -1.489875618e-9 -7.881023353e-10 -4.082784752e-10 -2.05286408e-10 -1.024003057e-10 Precision last xi:969.5940723358159 Precision last zeta: 964.4318582819114 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.00599658082", "0.09994301382"} theta0Ch={"0.005996580820127258", "0.09994301381966268"} gammaPolCh={"0.04368948338383746", "0.1783615691616382"} checkdefinitions[] -> 0.3283619261503722 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, 0, gammaPolCh[2], 0}, {0, (coefzeta[1, 0] - coefzeta[2, 0])/2, 0, gammaPolCh[1]}, {gammaPolCh[2], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {0, gammaPolCh[1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[2], gammaPolCh[1], 0, 0}, {0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, 0, 0, 0, 0}, {-gammaPolCh[2], 0, (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -gammaPolCh[1]}, {gammaPolCh[1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, 0, gammaPolCh[2]}, {0, 0, 0, 0, (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0}, {0, 0, -gammaPolCh[1], gammaPolCh[2], 0, 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.27675647831893*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[1], 0}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -gammaPolCh[2]}, {-gammaPolCh[1], 0, (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, 0}, {0, -gammaPolCh[2], 0, (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24642056769964915, -0.22237178801164173, -0.16160266374608392, -0.13761010763831322, -0.07587505596667717, -0.07222138596154912, -0.05875197816953897, -0.01574017894057917, 0.01574017894057917, 0.019393848945707216, 0.022221385961549114, 0.06523318519050893, 0.11389367374548053, 0.1344102231095134, 0.19956422864821216, 0.22013700159248162} Lowest energies (GS shifted):{0., 0.02404877968800742, 0.08481790395356523, 0.10881046006133593, 0.170545511732972, 0.17419918173810003, 0.18766858953011017, 0.23068038875907, 0.2621607466402283, 0.2658144166453564, 0.26864195366119825, 0.31165375289015806, 0.3603142414451297, 0.38083079080916254, 0.4459847963478613, 0.46655756929213077} Scale factor SCALE(Ninit):1.0201394465967895 Lowest energies (shifted and scaled):{0., 0.023574012129650265, 0.0831434410624154, 0.10666233956968367, 0.16717862670825648, 0.17076016648432998, 0.18396366316014665, 0.2261263296195687, 0.25698520679187836, 0.2605667465679519, 0.2633384627536897, 0.30550112921311173, 0.3532009693842807, 0.3733124839742484, 0.43718022848315263, 0.4573468566955022} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.00445`4.099905004476905} {ham, 0.0419830000000000001`4.3756484581108195} {maketable, 0.602457`6.231471048345946} {xi, 0.552151`6.193602856549237} {_, 0} data gammaPol=0.043689483383837456 "Success!"