NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.715663207404297 faktor=0.8242955588659627 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.09105486831128460634`18.959303170605462 "V[1,2]="0.1593262428174221368`18.202287314860317 "V[2,1]="0 "V[2,2]="-0.2687093126540283095`18.429282718030386 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5701691777208637291`18.756003736460727, 0.54111210055836656`18.73328724590258, 0.5905311796151403447`18.77124283298648, 0.5168750832033556231`18.713385596806667, 0.3414553551502537698`18.533333928282914, 0.221704793575791842`18.345775083285933, 0.1529831276573498655`18.18464353559296, 0.1075783924164392946`18.031725050171836, 0.07593246996283711803`18.880427527018494, 0.05365157865687127103`18.729582505274593, 0.0379240117981116745`18.578914273012664, 0.02681174887344166258`18.4283251430136, 0.01895717361755905328`18.277773587548577, 0.01340418379604959263`18.127240374181355, 0.009477990535654927037`18.97671627069437, 0.006701880566058423562`18.82619668402388, 0.004738920335358334616`18.675679407959777, 0.003350913571421403319`18.525163226421117, 0.002369450752245609061`18.374647686552937, 0.001675453349980092141`18.22413234018187, 0.001184724233112861109`18.07361727188624, 0.0008377261707115331345`18.92310208308961, 0.0005923620157584486142`18.772587202321496, 0.0004188629601361844681`18.622071957592794, 0.0002961810422548797868`18.471557257063033, 0.0002094313976873615518`18.32104179109727, 0.0001480905705017874401`18.170527406195646, 0.0001047156243883400523`18.02001148663952, 0.00007404533760035054784`18.869497717574472, 0.00005235773789294725895`18.718980874665714, 0.00003702272112014073197`18.568468335649502} "zeta="{-0.03681795675897564513`18.56605968332812, 0.0046985284470766513`18.671961860620126, -0.004851896468078584213`18.685911525124897, 0.006938918534494634832`18.841291788740154, 0.01442615845020549237`18.159150697968563, 0.00711785985318791857`18.85234943272847, 0.002976447598386585194`18.473698241017832, 0.001445780488501706776`18.16010235943902, 0.0007388388610314825661`18.868549730146224, 0.0003807174143795286092`18.580602742314667, 0.0001964286529591267199`18.293204838412272, 0.0001013247804947664944`18.005715671579633, 0.0000522333972383788074`18.717948273087632, 0.00002690822424322353887`18.429885038275994, 0.00001385103596888690624`18.141482257064382, 7.123921878057321735`18.85271914828213*^-6, 3.661329334067283105`18.563638795129904*^-6, 1.880354474769443091`18.274239727947105*^-6, 9.649975032870277221`18.984526189706415*^-7, 4.949362181492662659`18.694549235518252*^-7, 2.536886745062568205`18.404301079325684*^-7, 1.299492783726692153`18.11377387214301*^-7, 6.652839487086617642`18.82300704535895*^-8, 3.40411579364956281`18.532004324528806*^-8, 1.740843193581493179`18.240759653811615*^-8, 8.8985937220693412`18.949321378891945*^-9, 4.546471915259431413`18.65767451268152*^-9, 2.321770634731977737`18.365819314028585*^-9, 1.185146542403772881`18.073772053825014*^-9, 6.047266644116675527`18.78155911851754*^-10, 3.084155106330222063`18.48913621118483*^-10} "nrch="2 "xi="{0.5713368234132218948`18.75689221581584, 0.5409355470382852804`18.7331455216072, 0.5906526260972118081`18.771332139217975, 0.5167378917397850158`18.71327030898156, 0.3412271874879278521`18.533043626556424, 0.221622949888966303`18.345614731210095, 0.1529571925649906849`18.1845699037976, 0.1075690504664631592`18.03168733503776, 0.07592897607293910833`18.880407543314362, 0.0536502670308470625`18.72957188790001, 0.03792352025283617784`18.578908643946168, 0.02681156520007736341`18.428322167877507, 0.01895710511801195625`18.277772018273026, 0.01340415828537982329`18.12723954763691, 0.009477981054907441347`18.976715836273346, 0.006701877049810120619`18.826196456164308, 0.00473891903380819525`18.67567928868026, 0.003350913090676577426`18.52516316411428, 0.002369450574902907773`18.37464765404795, 0.00167545328461286727`18.224132323238024, 0.001184724209051231034`18.073617263065763, 0.0008377261618662829729`18.92310207850405, 0.0005923620125111068741`18.772587199940684, 0.0004188629589457282601`18.622071956358482, 0.0002961810418188357908`18.471557256423655, 0.0002094313975277212116`18.321041790766223, 0.0001480905704433947234`18.1705274060244, 0.0001047156243670008393`18.020011486551017, 0.00007404533759255983694`18.869497717528777, 0.00005235773789010594452`18.71898087464215, 0.00003702272111910515627`18.568468335637355} "zeta="{0.003812732477183306424`18.581236333792152, -0.0006718780740847938486`18.82729046865432, 0.0004952331104559973014`18.694809673184157, -0.0006624605409803035463`18.821160014918465, -0.001341908934548749748`18.127723044473143, -0.0006738218366824921812`18.82854508114353, -0.0002916688776365314556`18.464890090445643, -0.0001446298486257796068`18.160257931656428, -0.00007465894237714545089`18.873081833393353, -0.00003867524501793842486`18.58743307375089, -0.00002001196977528149715`18.30128983828301, -0.00001033963763479082385`18.014505318644925, -5.335174282957603632`18.727148610993947*^-6, -2.750035112620654317`18.439338238964826*^-6, -1.41613037218277207`18.15110323733201*^-6, -7.285533518598062853`18.862461360594562*^-7, -3.745210527337509188`18.573476235464366*^-7, -1.923787586916868671`18.284157118157857*^-7, -9.874474386120843662`18.99451398761165*^-8, -5.065254028292132205`18.704601230608258*^-8, -2.596645622987610163`18.41441268336726*^-8, -1.330274834276379597`18.123941375312242*^-8, -6.811260511117468799`18.83322749111467*^-9, -3.485580237601039436`18.542275084589754*^-9, -1.782700186437385291`18.251078309903153*^-9, -9.113514112356683891`18.959685870422923*^-10, -4.656749377133336312`18.668082865148335*^-10, -2.37831622749623913`18.376269599116128*^-10, -1.214122695533328631`18.084262577431602*^-10, -6.19566978278272204300000000000000000000000000001`18.792088262648015*^-11, -3.160111384909661642`18.499702390529514*^-11} "nrch="3 "xi="{-0.002610867957023352715`18.41678490821275, 0.0003968186079242581421`18.598592029231497, -0.000272861273008622872`18.435941900960675, 0.0003081807808826554878`18.48880555126472, 0.0005111049102585885203`18.708510053305005, 0.0001827629186146225164`18.261888084862463, 0.00005782172493423700987`18.76209104337488, 0.00002081174758711686014`18.318308549965348, 7.780513229294403989`18.8910082454857*^-6, 2.920235605117993272`18.465417891816525*^-6, 1.094266255806411932`18.039123006968577*^-6, 4.0886509855204434`18.611580039991424*^-7, 1.524782952434921495`18.183208027769048*^-7, 5.678518633737440906`18.754235055235302*^-8, 2.110338001323471689`18.324352019446312*^-8, 7.826849872969039238`18.89358700368491*^-9, 2.897125694323131191`18.461967337857107*^-9, 1.070090510218928001`18.02942051266298*^-9, 3.947470844294310256`18.596318931027678*^-10, 1.45500843825567782`18.16286551200045*^-10, 5.355874954721573985`18.728830428849985*^-11, 1.968862857164801159`18.2942154660361*^-11, 7.2282526517015904280000000000000000000000000001`18.85903332420464*^-12, 2.6498345478110462730000000000000000000000000001`18.423218758006282*^-12, 9.705895960301071773`18.987035631703222*^-13, 3.553431191206144884000000000000000000000000001`18.550647910162912*^-13, 1.299762261848897888000000000000000000000000001`18.113863923222905*^-13, 4.749890328367306396`18.67668358218597*^-14, 1.734133010297496377`18.239082405379428*^-14, 6.324468488700656429`18.8010240330694*^-15, 2.305095173916036097`18.362688861462434*^-15} "zeta="{-0.04514795990447979107`18.654638130679547, 0.006041180159122008266`18.78112178738414, -0.006003128941682855761`18.778377671701694, 0.008544555452774672474`18.931689472623862, 0.01769613837403066769`18.247878505580925, 0.008709320370706912645`18.939984266285762, 0.003644942018713800882`18.561690624244413, 0.001771995699603781758`18.248462663577772, 0.0009059098128372320823`18.95708496397182, 0.0004669069304413498941`18.669230320343523, 0.0002409267504670224865`18.381885023058672, 0.0001242875220703732039`18.09442752954269, 0.00006407379653401045665`18.80668045779742, 0.000033008920239690283`18.51863131828324, 0.0000169917916851020716`18.230239175097868, 8.739462555492566326`18.941484725956983*^-6, 4.491711480494180885`18.65241185211891*^-6, 2.30685073583212475`18.363019494520387*^-6, 1.183892094560102357`18.073312120568747*^-6, 6.07212820445334568`18.78334093250186*^-7, 3.112420089525398522`18.493098209863255*^-7, 1.594322373844097638`18.20257614079036*^-7, 8.162331018624016684`18.91181420335648*^-8, 4.176535155935925663`18.620816141425994*^-8, 2.135875392703816404`18.329575912289254*^-8, 1.091796987110631243`18.03814189150591*^-8, 5.578264438602474691`18.746499098223993*^-9, 2.848707078066607178`18.454647794652054*^-9, 1.454133477233333571`18.162604272936573*^-9, 7.419846594401501331`18.870394926317623*^-10, 3.784212019335705527`18.577975460776276*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.04514795990447979107`18.654638130679547, 0.006041180159122008266`18.78112178738414, -0.006003128941682855761`18.778377671701694, 0.008544555452774672474`18.931689472623862, 0.01769613837403066769`18.247878505580925, 0.008709320370706912645`18.939984266285762, 0.003644942018713800882`18.561690624244413, 0.001771995699603781758`18.248462663577772, 0.0009059098128372320823`18.95708496397182, 0.0004669069304413498941`18.669230320343523, 0.0002409267504670224865`18.381885023058672, 0.0001242875220703732039`18.09442752954269, 0.00006407379653401045665`18.80668045779742, 0.000033008920239690283`18.51863131828324, 0.0000169917916851020716`18.230239175097868, 8.739462555492566326`18.941484725956983*^-6, 4.491711480494180885`18.65241185211891*^-6, 2.30685073583212475`18.363019494520387*^-6, 1.183892094560102357`18.073312120568747*^-6, 6.07212820445334568`18.78334093250186*^-7, 3.112420089525398522`18.493098209863255*^-7, 1.594322373844097638`18.20257614079036*^-7, 8.162331018624016684`18.91181420335648*^-8, 4.176535155935925663`18.620816141425994*^-8, 2.135875392703816404`18.329575912289254*^-8, 1.091796987110631243`18.03814189150591*^-8, 5.578264438602474691`18.746499098223993*^-9, 2.848707078066607178`18.454647794652054*^-9, 1.454133477233333571`18.162604272936573*^-9, 7.419846594401501331`18.870394926317623*^-10, 3.784212019335705527`18.577975460776276*^-10} BAND="manual_V" thetaCh={"0.008290989043", "0.07220469471", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5701691777 0.5411121006 0.5905311796 0.5168750832 0.3414553552 0.2217047936 0.1529831277 0.1075783924 0.07593246996 0.05365157866 0.0379240118 0.02681174887 0.01895717362 0.0134041838 0.009477990536 0.006701880566 0.004738920335 0.003350913571 0.002369450752 0.00167545335 0.001184724233 0.0008377261707 0.0005923620158 0.0004188629601 0.0002961810423 0.0002094313977 0.0001480905705 0.0001047156244 0.0000740453376 0.00005235773789 0.00003702272112 "zetatable" (channel 1) -0.03681795676 0.004698528447 -0.004851896468 0.006938918534 0.01442615845 0.007117859853 0.002976447598 0.001445780489 0.000738838861 0.0003807174144 0.000196428653 0.0001013247805 0.00005223339724 0.00002690822424 0.00001385103597 7.123921878e-6 3.661329334e-6 1.880354475e-6 9.649975033e-7 4.949362181e-7 2.536886745e-7 1.299492784e-7 6.652839487e-8 3.404115794e-8 1.740843194e-8 8.898593722e-9 4.546471915e-9 2.321770635e-9 1.185146542e-9 6.047266644e-10 3.084155106e-10 Precision last xi:18.568468335649502 Precision last zeta: 18.48913621118483 Discretization (channel 2) "xitable" (channel 2) 0.5713368234 0.540935547 0.5906526261 0.5167378917 0.3412271875 0.2216229499 0.1529571926 0.1075690505 0.07592897607 0.05365026703 0.03792352025 0.0268115652 0.01895710512 0.01340415829 0.009477981055 0.00670187705 0.004738919034 0.003350913091 0.002369450575 0.001675453285 0.001184724209 0.0008377261619 0.0005923620125 0.0004188629589 0.0002961810418 0.0002094313975 0.0001480905704 0.0001047156244 0.00007404533759 0.00005235773789 0.00003702272112 "zetatable" (channel 2) 0.003812732477 -0.0006718780741 0.0004952331105 -0.000662460541 -0.001341908935 -0.0006738218367 -0.0002916688776 -0.0001446298486 -0.00007465894238 -0.00003867524502 -0.00002001196978 -0.00001033963763 -5.335174283e-6 -2.750035113e-6 -1.416130372e-6 -7.285533519e-7 -3.745210527e-7 -1.923787587e-7 -9.874474386e-8 -5.065254028e-8 -2.596645623e-8 -1.330274834e-8 -6.811260511e-9 -3.485580238e-9 -1.782700186e-9 -9.113514112e-10 -4.656749377e-10 -2.378316227e-10 -1.214122696e-10 -6.195669783e-11 -3.160111385e-11 Precision last xi:18.568468335637355 Precision last zeta: 18.499702390529514 Discretization (channel 3) "xitable" (channel 3) -0.002610867957 0.0003968186079 -0.000272861273 0.0003081807809 0.0005111049103 0.0001827629186 0.00005782172493 0.00002081174759 7.780513229e-6 2.920235605e-6 1.094266256e-6 4.088650986e-7 1.524782952e-7 5.678518634e-8 2.110338001e-8 7.826849873e-9 2.897125694e-9 1.07009051e-9 3.947470844e-10 1.455008438e-10 5.355874955e-11 1.968862857e-11 7.228252652e-12 2.649834548e-12 9.70589596e-13 3.553431191e-13 1.299762262e-13 4.749890328e-14 1.73413301e-14 6.324468489e-15 2.305095174e-15 "zetatable" (channel 3) -0.0451479599 0.006041180159 -0.006003128942 0.008544555453 0.01769613837 0.008709320371 0.003644942019 0.0017719957 0.0009059098128 0.0004669069304 0.0002409267505 0.0001242875221 0.00006407379653 0.00003300892024 0.00001699179169 8.739462555e-6 4.49171148e-6 2.306850736e-6 1.183892095e-6 6.072128204e-7 3.11242009e-7 1.594322374e-7 8.162331019e-8 4.176535156e-8 2.135875393e-8 1.091796987e-8 5.578264439e-9 2.848707078e-9 1.454133477e-9 7.419846594e-10 3.784212019e-10 Precision last xi:18.362688861462434 Precision last zeta: 18.577975460776276 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.0451479599 0.006041180159 -0.006003128942 0.008544555453 0.01769613837 0.008709320371 0.003644942019 0.0017719957 0.0009059098128 0.0004669069304 0.0002409267505 0.0001242875221 0.00006407379653 0.00003300892024 0.00001699179169 8.739462555e-6 4.49171148e-6 2.306850736e-6 1.183892095e-6 6.072128204e-7 3.11242009e-7 1.594322374e-7 8.162331019e-8 4.176535156e-8 2.135875393e-8 1.091796987e-8 5.578264439e-9 2.848707078e-9 1.454133477e-9 7.419846594e-10 3.784212019e-10 Precision last xi:MachinePrecision Precision last zeta: 18.577975460776276 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.008290989043", "0.07220469471", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0008290989043185381", "0.007220469470700034", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.016245318644727762", "0.04794107649408869", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> -0.2274796927213568 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1. 1-abs=0. orthogonality check=2.085137618124122*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.80866635505284*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=-1. 1-abs=0. orthogonality check=3.3584246494910985*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.2473885694068128, -0.2238621205464767, -0.1601497688668238, -0.13667963732444488, -0.07725392184632693, -0.07450809540355846, -0.05907216685652461, -0.01650261214089617, 0.01650261214089617, 0.019248438583664665, 0.024508095403558455, 0.06707765011918679, 0.11306721898751437, 0.13285141300202197, 0.20116047641127827, 0.22100098774374305} Lowest energies (GS shifted):{0., 0.023526448860336113, 0.087238800539989, 0.11070893208236793, 0.17013464756048588, 0.17288047400325435, 0.1883164025502882, 0.23088595726591665, 0.26389118154770896, 0.26663700799047746, 0.2718966648103713, 0.3144662195259996, 0.3604557883943272, 0.3802399824088348, 0.4485490458180911, 0.46838955715055586} Scale factor SCALE(Ninit):1.715663207404297 Lowest energies (shifted and scaled):{0., 0.013712743129772142, 0.0508484416775344, 0.06452835941493691, 0.09916552784149876, 0.10076597391443329, 0.10976303608865078, 0.13457533872002433, 0.15381292809033403, 0.15541337416326856, 0.15847904392712123, 0.18329134655849472, 0.21009705566844716, 0.22162856950468543, 0.26144353033992074, 0.2730078695685287} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.006883`4.289322763049706} {ham, 0.1840029999999999999`5.017399893000059} {maketable, 0.88432`6.3981544407336735} {xi, 0.080881`5.359391505660981} {_, 0} data gammaPol=0.016245318644727762 "Success!"