NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.4426950408889634 faktor=0.9802581434685472 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.09105486831412418214`18.95930317061901 "V[1,2]="0.1593262428223907734`18.202287314873864 "V[2,1]="0 "V[2,2]="-0.2687093126624081063`18.429282718043925 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5915080250873427925`18.771960641149086, 0.5602549796259760351`18.748385725295403, 0.5067681732629593094`18.704809331921144, 0.3767437265188093298`18.576046029238967, 0.2587635352529937816`18.41290307588312, 0.1804170232526143836`18.256277513005674, 0.1273486776506206619`18.104994439743137, 0.09008533326853188083`18.954654089546903, 0.0637262987100603584`18.804318694935585, 0.0450723428155779815`18.653910132853174, 0.03187511084584730009`18.503451703705732, 0.02254060800002754411`18.352965626328356, 0.01593915066916999981`18.202465175935874, 0.01127086955993456679`18.051957423633777, 0.007969774607661236215`18.90144603933424, 0.005635504683744950796`18.750932815067294, 0.003984911868378411548`18.600418720838736, 0.002817760846793072177`18.449904130247585, 0.001992458974535465683`18.299389387876786, 0.001408881419969006035`18.148874441781974, 0.0009962299020106284674`18.998359573015037, 0.0007044407708512285225`18.847844483642913, 0.000498115037790030149`18.69732965301656, 0.0003522203406143916576`18.54681443272583, 0.0002490575693188350334`18.396299745279194, 0.0001761101095825257448`18.245784287312443, 0.0001245288292136498092`18.095269904998194, 0.00008805499264658949972`18.94475398514592, 0.00006226445874519607169`18.794240217199377, 0.00004402743418655199759`18.64372337655443, 0.0000311322735047162431`18.49321083717784} "zeta="{-0.03821866849028007773`18.582275552488827, 0.004570221851753068429`18.659937282488578, 0.004708148814863793302`18.672850181540294, 0.01057916467558961751`18.02445137742469, 0.007668559212702993379`18.884713775324414, 0.003859827202266060374`18.58656786250022, 0.001949615354693765056`18.289948936587272, 0.001010339305532322821`18.004467248806062, 0.0005247957618397080647`18.719990319094244, 0.00027197694106754545`18.43453208494731, 0.0001406488067313683933`18.148136051949635, 0.0000726146377235275701`18.861024174994576, 0.000037443309879883398`18.57337423213427, 0.00001928622191806589513`18.285247159689597, 9.924639806127251031`18.996714753918784*^-6, 5.10329789462880518`18.70785092012871*^-6, 2.622061870906589338`18.418642935209256*^-6, 1.346179993676076158`18.129103131978678*^-6, 6.906758574499561778`18.839274275523287*^-7, 3.541197531172336492`18.54915015276926*^-7, 1.814482601062008732`18.258752808139228*^-7, 9.292414419803301921`18.968128570071414*^-8, 4.756156400100074889`18.677256127398216*^-8, 2.432983912722897935`18.386139237316034*^-8, 1.243960300351582868`18.09480652053699*^-8, 6.357059661209921323`18.803256287317303*^-9, 3.247074277424597643`18.511492223306224*^-9, 1.657922785850911284`18.21956430036399*^-9, 8.46130015328148461`18.9274371013383*^-10, 4.31651329353431517`18.635133082742765*^-10, 2.201115934693561204`18.34264291782444*^-10} "nrch="2 "xi="{0.5927232492749687776`18.772851962558406, 0.5600966440320026551`18.74826297048565, 0.5066828389562308965`18.70473619524622, 0.3765692345488586557`18.575844835565267, 0.2586644249391830686`18.41273670272115, 0.1803785580644071407`18.256184910879085, 0.1273340892302772254`18.104944686314276, 0.0900797669916615501`18.954627254123984, 0.06372418637030380362`18.804304299109635, 0.04507154599818805063`18.653902455052716, 0.03187481169613212706`18.50344762780837, 0.02254049607685817622`18.352963469876517, 0.0159391089249639531`18.202464038528838, 0.01127085403937633061`18.051956825587865, 0.007969768847585439672`18.90144572545208, 0.005635502548580025722`18.750932650522934, 0.003984911078353331471`18.60041863473807, 0.002817760554975369796`18.449904085270443, 0.001992458866923357656`18.299389364420673, 0.001408881380359611494`18.14887442957219, 0.000996229887446484089`18.99835956666597, 0.0007044407654993746883`18.847844480343444, 0.0004981150358256926022`18.697329651303903, 0.000352220339894215135`18.54681443183784, 0.0002490575690550983013`18.396299744819302, 0.0001761101094860702135`18.24578428707458, 0.0001245288291783982224`18.095269904875252, 0.00008805499263371008593`18.944753985082396, 0.00006226445874049456449`18.794240217166585, 0.00004402743418483725732`18.64372337653752, 0.00003113227350409133608`18.493210837169123} "zeta="{0.00395753533429683748`18.59742480108882, -0.0006713701136433525589`18.826962004518986, -0.0004060058962589569429`18.608532340705604, -0.0009906714330688893861`18.99592963988826, -0.0007263121833480705664`18.861123329190256, -0.0003749487146936047554`18.573971869197745, -0.0001935192435515266992`18.286724157740966, -0.0001015578756579466692`18.00671360791968, -0.00005312007196652903561`18.725258654738074, -0.00002763746519178506965`18.44149820861164, -0.00001432377404759076182`18.15605746155388, -7.404368947026649251`18.869488050770453*^-6, -3.820881233998123427`18.582163538546595*^-6, -1.969006705604851602`18.294247195164136*^-6, -1.013591757817153417`18.00586307035498*^-6, -5.213301068113825326`18.717112806155672*^-7, -2.679157311156080382`18.427998214676236*^-7, -1.375749910998356507`18.138539493387302*^-7, -7.05966038364228365`18.848783809117275*^-8, -3.620154788551980831`18.558727140250518*^-8, -1.855209281643777227`18.26839290841809*^-8, -9.502292686811313514`18.9778284032995*^-9, -4.864213461800821622`18.687012625320605*^-9, -2.488568577702341345`18.395949613136036*^-9, -1.272530960814382355`18.104668357568535*^-9, -6.503801333353111804`18.81316726672712*^-10, -3.322386947135375415`18.521450211865904*^-10, -1.696553099336724765`18.229567456900703*^-10, -8.659315578778028149`18.93748356729374*^-11, -4.417952767758233745`18.645221068526904*^-11, -2.253049996511524394`18.35277082908209*^-11} "nrch="3 "xi="{-0.002717307643540751039`18.434138810419572, 0.0003559334130041148033`18.551368759013062, 0.0001915673709703712743`18.28232153911484, 0.0003909728317377011834`18.59214657980932, 0.00022150612339153297`18.34538573651121, 0.00008581425321039744866`18.93355942743529, 0.00003251432001043817955`18.512074675803476, 0.00001239946006922058382`18.093402774350672, 4.704124979209802088`18.672478851558758*^-6, 1.774222637142261035`18.249008116068172*^-6, 6.660439599856749445`18.823502894259118*^-7, 2.49181466505493205`18.39651573745054*^-7, 9.293560554250988783`18.968182133026005*^-8, 3.455318590522818163`18.5384880967832*^-8, 1.282349012094889906`18.1080062415622*^-8, 4.753440311296479891`18.67700804486693*^-9, 1.758801188427602957`18.245216750401944*^-9, 6.4966147663226285`18.812687114907494*^-10, 2.395721962682822094`18.379436414268522*^-10, 8.818066645627613081`18.945373376835388*^-11, 3.242351492777667917`18.510860093516584*^-11, 1.19145961796732347799999999999999999999999999999`18.076079327428463*^-11, 4.373117974389773647`18.64079119354321*^-12, 1.603297182317496606`18.205014029327543*^-12, 5.871453997744564099999999999999999999999999999`18.76874566257699*^-13, 2.147346593377109601000000000000000000000000001`18.33190214757683*^-13, 7.84791016634261661699999999999999999999999999`18.894754023107243*^-14, 2.86728867215906498399999999999999999999999999`18.457471418936937*^-14, 1.046677668692205078`18.01981295841139*^-14, 3.817448475065699507`18.581773184000717*^-15, 1.39121667259714128`18.143394773691*^-15} "zeta="{-0.04686530292724073316`18.6708514285575, 0.005896510332591694409`18.770595063900725, 0.005743315000387935916`18.759162636441125, 0.01297998723900207173`18.113274265497193, 0.009391821500800853761`18.972749829862455, 0.004726817263242108144`18.674568812986305, 0.00238909999010890068`18.378234326494876, 0.001238661409968474809`18.092952607523475, 0.0006435652310816645681`18.808592573094398, 0.0003335837453975771388`18.52320488052648, 0.0001725247118729591978`18.23685131077974, 0.00008907694636697821708`18.949765320635215, 0.00004593382967267914656`18.662132655659082, 0.00002366019530170192844`18.374018325165174, 0.00001217576046418431618`18.085496095561005, 6.260959829964122266`18.79664091738025*^-6, 3.216922583781918913`18.507440609599243*^-6, 1.651611168077403412`18.217907810881034*^-6, 8.473941697464062291`18.92808547163609*^-7, 4.344776741779478478`18.637967464949398*^-7, 2.22626009388538755`18.34757590157126*^-7, 1.140137333798827777`18.056957166879222*^-7, 5.835659742913220773`18.766089961754115*^-8, 2.985231809825968351`18.474978060698017*^-8, 1.526335882531356406`18.1836501141422*^-8, 7.800176663544428655`18.892104438989666*^-9, 3.984233078643359764`18.600344736831925*^-9, 2.034328137116796557`18.30842100593443*^-9, 1.038240168141053494`18.016297827147866*^-9, 5.296605939302602249`18.723997663184324*^-10, 2.700916794133564092`18.4315112052888*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.04686530292724073316`18.6708514285575, 0.005896510332591694409`18.770595063900725, 0.005743315000387935916`18.759162636441125, 0.01297998723900207173`18.113274265497193, 0.009391821500800853761`18.972749829862455, 0.004726817263242108144`18.674568812986305, 0.00238909999010890068`18.378234326494876, 0.001238661409968474809`18.092952607523475, 0.0006435652310816645681`18.808592573094398, 0.0003335837453975771388`18.52320488052648, 0.0001725247118729591978`18.23685131077974, 0.00008907694636697821708`18.949765320635215, 0.00004593382967267914656`18.662132655659082, 0.00002366019530170192844`18.374018325165174, 0.00001217576046418431618`18.085496095561005, 6.260959829964122266`18.79664091738025*^-6, 3.216922583781918913`18.507440609599243*^-6, 1.651611168077403412`18.217907810881034*^-6, 8.473941697464062291`18.92808547163609*^-7, 4.344776741779478478`18.637967464949398*^-7, 2.22626009388538755`18.34757590157126*^-7, 1.140137333798827777`18.056957166879222*^-7, 5.835659742913220773`18.766089961754115*^-8, 2.985231809825968351`18.474978060698017*^-8, 1.526335882531356406`18.1836501141422*^-8, 7.800176663544428655`18.892104438989666*^-9, 3.984233078643359764`18.600344736831925*^-9, 2.034328137116796557`18.30842100593443*^-9, 1.038240168141053494`18.016297827147866*^-9, 5.296605939302602249`18.723997663184324*^-10, 2.700916794133564092`18.4315112052888*^-10} BAND="manual_V" thetaCh={"0.008290989044", "0.07220469471", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5915080251 0.5602549796 0.5067681733 0.3767437265 0.2587635353 0.1804170233 0.1273486777 0.09008533327 0.06372629871 0.04507234282 0.03187511085 0.022540608 0.01593915067 0.01127086956 0.007969774608 0.005635504684 0.003984911868 0.002817760847 0.001992458975 0.00140888142 0.000996229902 0.0007044407709 0.0004981150378 0.0003522203406 0.0002490575693 0.0001761101096 0.0001245288292 0.00008805499265 0.00006226445875 0.00004402743419 0.0000311322735 "zetatable" (channel 1) -0.03821866849 0.004570221852 0.004708148815 0.01057916468 0.007668559213 0.003859827202 0.001949615355 0.001010339306 0.0005247957618 0.0002719769411 0.0001406488067 0.00007261463772 0.00003744330988 0.00001928622192 9.924639806e-6 5.103297895e-6 2.622061871e-6 1.346179994e-6 6.906758574e-7 3.541197531e-7 1.814482601e-7 9.29241442e-8 4.7561564e-8 2.432983913e-8 1.2439603e-8 6.357059661e-9 3.247074277e-9 1.657922786e-9 8.461300153e-10 4.316513294e-10 2.201115935e-10 Precision last xi:18.49321083717784 Precision last zeta: 18.34264291782444 Discretization (channel 2) "xitable" (channel 2) 0.5927232493 0.560096644 0.506682839 0.3765692345 0.2586644249 0.1803785581 0.1273340892 0.09007976699 0.06372418637 0.045071546 0.0318748117 0.02254049608 0.01593910892 0.01127085404 0.007969768848 0.005635502549 0.003984911078 0.002817760555 0.001992458867 0.00140888138 0.0009962298874 0.0007044407655 0.0004981150358 0.0003522203399 0.0002490575691 0.0001761101095 0.0001245288292 0.00008805499263 0.00006226445874 0.00004402743418 0.0000311322735 "zetatable" (channel 2) 0.003957535334 -0.0006713701136 -0.0004060058963 -0.0009906714331 -0.0007263121833 -0.0003749487147 -0.0001935192436 -0.0001015578757 -0.00005312007197 -0.00002763746519 -0.00001432377405 -7.404368947e-6 -3.820881234e-6 -1.969006706e-6 -1.013591758e-6 -5.213301068e-7 -2.679157311e-7 -1.375749911e-7 -7.059660384e-8 -3.620154789e-8 -1.855209282e-8 -9.502292687e-9 -4.864213462e-9 -2.488568578e-9 -1.272530961e-9 -6.503801333e-10 -3.322386947e-10 -1.696553099e-10 -8.659315579e-11 -4.417952768e-11 -2.253049997e-11 Precision last xi:18.493210837169123 Precision last zeta: 18.35277082908209 Discretization (channel 3) "xitable" (channel 3) -0.002717307644 0.000355933413 0.000191567371 0.0003909728317 0.0002215061234 0.00008581425321 0.00003251432001 0.00001239946007 4.704124979e-6 1.774222637e-6 6.6604396e-7 2.491814665e-7 9.293560554e-8 3.455318591e-8 1.282349012e-8 4.753440311e-9 1.758801188e-9 6.496614766e-10 2.395721963e-10 8.818066646e-11 3.242351493e-11 1.191459618e-11 4.373117974e-12 1.603297182e-12 5.871453998e-13 2.147346593e-13 7.847910166e-14 2.867288672e-14 1.046677669e-14 3.817448475e-15 1.391216673e-15 "zetatable" (channel 3) -0.04686530293 0.005896510333 0.005743315 0.01297998724 0.009391821501 0.004726817263 0.00238909999 0.00123866141 0.0006435652311 0.0003335837454 0.0001725247119 0.00008907694637 0.00004593382967 0.0000236601953 0.00001217576046 6.26095983e-6 3.216922584e-6 1.651611168e-6 8.473941697e-7 4.344776742e-7 2.226260094e-7 1.140137334e-7 5.835659743e-8 2.98523181e-8 1.526335883e-8 7.800176664e-9 3.984233079e-9 2.034328137e-9 1.038240168e-9 5.296605939e-10 2.700916794e-10 Precision last xi:18.143394773691 Precision last zeta: 18.4315112052888 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.04686530293 0.005896510333 0.005743315 0.01297998724 0.009391821501 0.004726817263 0.00238909999 0.00123866141 0.0006435652311 0.0003335837454 0.0001725247119 0.00008907694637 0.00004593382967 0.0000236601953 0.00001217576046 6.26095983e-6 3.216922584e-6 1.651611168e-6 8.473941697e-7 4.344776742e-7 2.226260094e-7 1.140137334e-7 5.835659743e-8 2.98523181e-8 1.526335883e-8 7.800176664e-9 3.984233079e-9 2.034328137e-9 1.038240168e-9 5.296605939e-10 2.700916794e-10 Precision last xi:MachinePrecision Precision last zeta: 18.4315112052888 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.008290989044", "0.07220469471", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0008290989043702497", "0.00722046947115038", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.016245318645234378", "0.047941076495583754", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> -0.2315423332046191 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.8214596497756474*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=7.659531564810486*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=-1. 1-abs=0. orthogonality check=3.219646771412954*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24825769956362725, -0.22513288381125304, -0.15899601539674127, -0.13592758428128637, -0.07842836208297672, -0.07639128973595721, -0.05935628750531064, -0.01713056657799162, 0.01713056657799162, 0.019167638925011145, 0.026391289735957228, 0.06861701066327627, 0.11240154981573669, 0.13161102749730424, 0.20251787171068983, 0.22178373402917706} Lowest energies (GS shifted):{0., 0.02312481575237421, 0.08926168416688599, 0.11233011528234088, 0.16982933748065054, 0.17186640982767004, 0.18890141205831662, 0.23112713298563564, 0.26538826614161887, 0.2674253384886384, 0.2746489892995845, 0.3168747102269035, 0.36065924937936394, 0.3798687270609315, 0.4507755712743171, 0.4700414335928043} Scale factor SCALE(Ninit):1.4426950408889634 Lowest energies (shifted and scaled):{0., 0.016028900839726395, 0.06187148471230933, 0.0778613026999282, 0.11771672645107636, 0.11912871740500956, 0.13093648117201462, 0.1602051205798969, 0.1839531284297555, 0.18536511938368874, 0.19037217257664557, 0.2196408119845278, 0.24998994185017231, 0.26330493714518005, 0.3124538162940916, 0.32580789444120706} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.008876`4.399762287055943} {ham, 0.183932`5.017232282369932} {maketable, 0.907883`6.409574877558494} {xi, 0.078544`5.34665800825177} {_, 0} data gammaPol=0.016245318645234378 "Success!"