NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.2131570881878404 faktor=1.1657299587521546 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.09105486831651199431`18.959303170630395 "V[1,2]="0.1593262428265689035`18.202287314885254 "V[2,1]="0 "V[2,2]="-0.2687093126694545808`18.429282718055315 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5838533474022055136`18.76630377448876, 0.5061681965496505065`18.704294854182763, 0.4066961218078505302`18.609270031058433, 0.2953482680417282569`18.47033442844545, 0.2103621565736761845`18.32296761442915, 0.1499137714371179542`18.175841530009265, 0.1065815329444294718`18.027681962334984, 0.07558923589126566311`18.878459955212033, 0.05353154958844730249`18.728609815174416, 0.03788179236166253766`18.578430519284883, 0.02679686004218126069`18.428083907974848, 0.0189519158544564012`18.277653119473552, 0.01340232625456641569`18.127180185815483, 0.009477333673731845598`18.976686171340173, 0.006701648671310218505`18.826181656547494, 0.004738838089021322857`18.675671870496018, 0.003350884792280138351`18.525159496490268, 0.002369440277418557311`18.374645766627133, 0.001675449938251270376`18.224131455826296, 0.001184722742047200844`18.07361672529322, 0.0008377259434728999508`18.923101965284413, 0.0005923616467832741985`18.772586931804604, 0.0004188631242495919563`18.62207212775235, 0.0002961808118244869752`18.471556919179534, 0.0002094316136190821896`18.321042238871133, 0.0001480903590821260941`18.170526786180087, 0.0001047158458259965936`18.020012405022534, 0.00007404512733054775765`18.869496484287573, 0.00005235796001659746125`18.71898271712253, 0.00003702251158304590347`18.568465877670757, 0.00002617901719547755654`18.41795333837239} "zeta="{-0.03785078865849482443`18.57807493288402, 0.008144548642719063453`18.910867021436673, 0.008141975690456573073`18.910729801369797, 0.007871555073243394554`18.896060538332822, 0.004772193933714146026`18.678718084334122, 0.002581842347314007406`18.411929719811916, 0.001378188670734083751`18.139308675517796, 0.0007269233828570691603`18.861488638980248, 0.0003796802682080455864`18.579418027661173, 0.0001971162561095923837`18.29472244187239, 0.0001019756251550874585`18.00849637641201, 0.00005264184441189889675`18.721331097244907, 0.00002713211332449135563`18.433483622343246, 0.00001396772205513323762`18.14512558438534, 7.183854264410089366`18.856357513413634*^-6, 3.691476753565563891`18.56720013787294*^-6, 1.895459771000227822`18.277714571448808*^-6, 9.72633321481617082`18.98794914399805*^-7, 4.987517899179430719`18.697884467291477*^-7, 2.555895000114610047`18.40754300840362*^-7, 1.309034862017184681`18.116951212769305*^-7, 6.700315312969182875`18.826095240829247*^-8, 3.427726769892414651`18.535006196256624*^-8, 1.75275875398353266`18.243722144830997*^-8, 8.958041752271025151`18.952213082303654*^-9, 4.576105276616015586`18.66049600715898*^-9, 2.33660420464975311`18.368585153858188*^-9, 1.192551642374594051`18.076477194850685*^-9, 6.083859610655549361`18.78417918384561*^-10, 3.102769624166257791`18.491749531089297*^-10, 1.581701879782749932`18.19912463076342*^-10} "nrch="2 "xi="{0.5850615115999296956`18.767201528892524, 0.5059735931208231285`18.70412785150151, 0.4065587835299788178`18.609123348249863, 0.2952347631298448127`18.470167493213975, 0.2103073955112177429`18.322854545026978, 0.1498912140233833179`18.175776177124526, 0.1065726027835740691`18.02764557252185, 0.07558578111412023182`18.878440105495056, 0.05353023364891528607`18.728599138997353, 0.03788129587174909191`18.57842482725636, 0.02679667388436563283`18.428080890920132, 0.0189518463710239872`18.27765152721624, 0.01340230038982722846`18.127179347683047, 0.009477324063467908524`18.976685730954, 0.006701645107986887659`18.826181425629382, 0.004738836770389202695`18.675671749648938, 0.003350884305233141`18.525159433366092, 0.002369440097856346725`18.37464573371519, 0.001675449872126969896`18.22413143868617, 0.001184722717717327008`18.0736167163744, 0.000837725934531673936`18.923101960649095, 0.0005923616435014081002`18.77258692939848, 0.0004188631230464988841`18.622072126504932, 0.0002961808113839918956`18.47155691853363, 0.0002094316134579219876`18.321042238536936, 0.0001480903590231958571`18.170526786007265, 0.0001047158458044658021`18.020012404933237, 0.00007404512732268769847`18.86949648424147, 0.00005235796001373085103`18.718982717098754, 0.00003702251158200142375`18.568465877658507, 0.00002617901719509718115`18.41795333836608} "zeta="{0.003919391498568894003`18.593218646273748, -0.0009981996725529230369`18.999217423065186, -0.0007348963544315923304`18.86622609299923, -0.0007406181645174662355`18.869594359418745, -0.0004576535831748915466`18.660536866997425, -0.0002532056256521483069`18.403473350486486, -0.0001373123403419965855`18.137709569295044, -0.00007309734372778041857`18.863901595489633, -0.00003837961744342866048`18.58410064150326, -0.00001998440234015944978`18.300691164642558, -0.00001035635933743363581`18.015207110858736, -5.351646512378045086`18.728487419633908*^-6, -2.760096680661026073`18.440924294797902*^-6, -1.421551395147860664`18.15276256590871*^-6, -7.313785153406527111`18.864142198542297*^-7, -3.759279135177245418`18.57510457428162*^-7, -1.930732542443759331`18.28572211666612*^-7, -9.909444160089675208`18.99604929475006*^-8, -5.082409848698069893`18.706069683904232*^-8, -2.604999398919874809`18.41580762742602*^-8, -1.33441448013060736`18.125290745978543*^-8, -6.831336424962337024`18.834505673697706*^-9, -3.495297239158083812`18.543484113940682*^-9, -1.787576405365695882`18.252264613672867*^-9, -9.137285239869989007`18.960817182553004*^-10, -4.668302998477294107`18.66915903638279*^-10, -2.383991395668936789`18.377304683610042*^-10, -1.216888593938208859`18.085250820421887*^-10, -6.20875803320345770500000000000000000000000000001`18.79300473491569*^-11, -3.16683265327071857200000000000000000000000000001`18.500625114309287*^-11, -1.614538011090402981`18.20804827407445*^-11} "nrch="3 "xi="{-0.002701641921248338751`18.431627786606324, 0.0004373668481168680356`18.640845860947714, 0.0003079920803590427587`18.48853954929075, 0.000253991368298215833`18.404818957705956, 0.0001223027778658086263`18.087436321288873, 0.00005031761186461898187`18.701720020779227, 0.00001990609846391531388`18.29898614794143, 7.698021267697502824`18.886379106606704*^-6, 2.931594998817179145`18.467103972132826*^-6, 1.105935174273313582`18.04372967101887*^-6, 4.146432077247267886`18.61767455559358*^-7, 1.547607433672423436`18.189660807114834*^-7, 5.760768231850215597`18.760480402972874*^-8, 2.140443676660839741`18.330503804355693*^-8, 7.936366583039368073`18.899621719795597*^-9, 2.936899533892188602`18.467889090335362*^-9, 1.084765244155214898`18.035335761964166*^-9, 3.999259166488397779`18.6019795489019*^-10, 1.472738184811345852`18.168125547251307*^-10, 5.418813878879303463`18.733904234466195*^-11, 1.99141332490394094000000000000000000000000000001`18.29916140874429*^-11, 7.3094579357050482190000000000000000000000000001`18.863885171176598*^-12, 2.679560240809956032`18.428063525125577*^-12, 9.810821777491585345`18.991705386430144*^-13, 3.589401994234834339`18.555022099765768*^-13, 1.312509237648611693`18.118102368722337*^-13, 4.79539555545785892599999999999999999999999999`18.68082443642167*^-14, 1.750612972682260434`18.243190142424314*^-14, 6.384605752698035445`18.8051340848862*^-15, 2.3262918892818871340000000000000000000000001`18.366664206502147*^-15, 8.47176212143501218`18.92797375271811*^-16} "zeta="{-0.04641413804163891516`18.666650289568267, 0.01028602601163469341`18.01224761824437, 0.009963691082647945993`18.998420254073107, 0.009646919987727523363`18.98438867646844, 0.005844698406421345964`18.76676210595016, 0.003163416886829585519`18.500156428627488, 0.001689513678571762274`18.22776171224243, 0.0008914346601179977837`18.950089516002514, 0.0004657022878365552846`18.668108371478688, 0.0002418061562941440854`18.383467353640306, 0.0001251053002829032273`18.097275709652298, 0.00006458527974051751297`18.810133544992805, 0.00003328915922860791853`18.52230282648778, 0.00001713791255611487045`18.233957922571463, 8.81456475361996692`18.945200872532347*^-6, 4.52953048737261546`18.6560531871539*^-6, 2.325821769816793357`18.36657643122184*^-6, 1.193491112201590916`18.07681918921108*^-6, 6.120151633705660887`18.786762182417757*^-7, 3.136374866892135376`18.49642796501146*^-7, 1.606360609022833604`18.20584304587966*^-7, 8.222305436681347274`18.914993605623785*^-8, 4.206402152507129237`18.62391079100024*^-8, 2.15096184061841308`18.332632705805477*^-8, 1.099333199324125563`18.041129343648148*^-8, 5.615878733676163706`18.749417721296982*^-9, 2.867557252402739156`18.457512097594883*^-9, 1.463555333269201974`18.165409146639437*^-9, 7.466480643299552331`18.873115943534827*^-10, 3.807947252999251352`18.580690923985017*^-10, 1.94120085870679031`18.288070474757166*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.04641413804163891516`18.666650289568267, 0.01028602601163469341`18.01224761824437, 0.009963691082647945993`18.998420254073107, 0.009646919987727523363`18.98438867646844, 0.005844698406421345964`18.76676210595016, 0.003163416886829585519`18.500156428627488, 0.001689513678571762274`18.22776171224243, 0.0008914346601179977837`18.950089516002514, 0.0004657022878365552846`18.668108371478688, 0.0002418061562941440854`18.383467353640306, 0.0001251053002829032273`18.097275709652298, 0.00006458527974051751297`18.810133544992805, 0.00003328915922860791853`18.52230282648778, 0.00001713791255611487045`18.233957922571463, 8.81456475361996692`18.945200872532347*^-6, 4.52953048737261546`18.6560531871539*^-6, 2.325821769816793357`18.36657643122184*^-6, 1.193491112201590916`18.07681918921108*^-6, 6.120151633705660887`18.786762182417757*^-7, 3.136374866892135376`18.49642796501146*^-7, 1.606360609022833604`18.20584304587966*^-7, 8.222305436681347274`18.914993605623785*^-8, 4.206402152507129237`18.62391079100024*^-8, 2.15096184061841308`18.332632705805477*^-8, 1.099333199324125563`18.041129343648148*^-8, 5.615878733676163706`18.749417721296982*^-9, 2.867557252402739156`18.457512097594883*^-9, 1.463555333269201974`18.165409146639437*^-9, 7.466480643299552331`18.873115943534827*^-10, 3.807947252999251352`18.580690923985017*^-10, 1.94120085870679031`18.288070474757166*^-10} BAND="manual_V" thetaCh={"0.008290989044", "0.07220469472", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5838533474 0.5061681965 0.4066961218 0.295348268 0.2103621566 0.1499137714 0.1065815329 0.07558923589 0.05353154959 0.03788179236 0.02679686004 0.01895191585 0.01340232625 0.009477333674 0.006701648671 0.004738838089 0.003350884792 0.002369440277 0.001675449938 0.001184722742 0.0008377259435 0.0005923616468 0.0004188631242 0.0002961808118 0.0002094316136 0.0001480903591 0.0001047158458 0.00007404512733 0.00005235796002 0.00003702251158 0.0000261790172 "zetatable" (channel 1) -0.03785078866 0.008144548643 0.00814197569 0.007871555073 0.004772193934 0.002581842347 0.001378188671 0.0007269233829 0.0003796802682 0.0001971162561 0.0001019756252 0.00005264184441 0.00002713211332 0.00001396772206 7.183854264e-6 3.691476754e-6 1.895459771e-6 9.726333215e-7 4.987517899e-7 2.555895e-7 1.309034862e-7 6.700315313e-8 3.42772677e-8 1.752758754e-8 8.958041752e-9 4.576105277e-9 2.336604205e-9 1.192551642e-9 6.083859611e-10 3.102769624e-10 1.58170188e-10 Precision last xi:18.41795333837239 Precision last zeta: 18.19912463076342 Discretization (channel 2) "xitable" (channel 2) 0.5850615116 0.5059735931 0.4065587835 0.2952347631 0.2103073955 0.149891214 0.1065726028 0.07558578111 0.05353023365 0.03788129587 0.02679667388 0.01895184637 0.01340230039 0.009477324063 0.006701645108 0.00473883677 0.003350884305 0.002369440098 0.001675449872 0.001184722718 0.0008377259345 0.0005923616435 0.000418863123 0.0002961808114 0.0002094316135 0.000148090359 0.0001047158458 0.00007404512732 0.00005235796001 0.00003702251158 0.0000261790172 "zetatable" (channel 2) 0.003919391499 -0.0009981996726 -0.0007348963544 -0.0007406181645 -0.0004576535832 -0.0002532056257 -0.0001373123403 -0.00007309734373 -0.00003837961744 -0.00001998440234 -0.00001035635934 -5.351646512e-6 -2.760096681e-6 -1.421551395e-6 -7.313785153e-7 -3.759279135e-7 -1.930732542e-7 -9.90944416e-8 -5.082409849e-8 -2.604999399e-8 -1.33441448e-8 -6.831336425e-9 -3.495297239e-9 -1.787576405e-9 -9.13728524e-10 -4.668302998e-10 -2.383991396e-10 -1.216888594e-10 -6.208758033e-11 -3.166832653e-11 -1.614538011e-11 Precision last xi:18.41795333836608 Precision last zeta: 18.20804827407445 Discretization (channel 3) "xitable" (channel 3) -0.002701641921 0.0004373668481 0.0003079920804 0.0002539913683 0.0001223027779 0.00005031761186 0.00001990609846 7.698021268e-6 2.931594999e-6 1.105935174e-6 4.146432077e-7 1.547607434e-7 5.760768232e-8 2.140443677e-8 7.936366583e-9 2.936899534e-9 1.084765244e-9 3.999259166e-10 1.472738185e-10 5.418813879e-11 1.991413325e-11 7.309457936e-12 2.679560241e-12 9.810821777e-13 3.589401994e-13 1.312509238e-13 4.795395555e-14 1.750612973e-14 6.384605753e-15 2.326291889e-15 8.471762121e-16 "zetatable" (channel 3) -0.04641413804 0.01028602601 0.009963691083 0.009646919988 0.005844698406 0.003163416887 0.001689513679 0.0008914346601 0.0004657022878 0.0002418061563 0.0001251053003 0.00006458527974 0.00003328915923 0.00001713791256 8.814564754e-6 4.529530487e-6 2.32582177e-6 1.193491112e-6 6.120151634e-7 3.136374867e-7 1.606360609e-7 8.222305437e-8 4.206402153e-8 2.150961841e-8 1.099333199e-8 5.615878734e-9 2.867557252e-9 1.463555333e-9 7.466480643e-10 3.807947253e-10 1.941200859e-10 Precision last xi:18.92797375271811 Precision last zeta: 18.288070474757166 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.04641413804 0.01028602601 0.009963691083 0.009646919988 0.005844698406 0.003163416887 0.001689513679 0.0008914346601 0.0004657022878 0.0002418061563 0.0001251053003 0.00006458527974 0.00003328915923 0.00001713791256 8.814564754e-6 4.529530487e-6 2.32582177e-6 1.193491112e-6 6.120151634e-7 3.136374867e-7 1.606360609e-7 8.222305437e-8 4.206402153e-8 2.150961841e-8 1.099333199e-8 5.615878734e-9 2.867557252e-9 1.463555333e-9 7.466480643e-10 3.807947253e-10 1.941200859e-10 Precision last xi:MachinePrecision Precision last zeta: 18.288070474757166 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.008290989044", "0.07220469472", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.000829098904413734", "0.00722046947152907", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.01624531864566039", "0.04794107649684093", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> -0.23047513543592907 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=1.1830814106161824*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=4.6016409611031086*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=-1. 1-abs=0. orthogonality check=2.6922908347160046*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24802740509691323, -0.22479887657437572, -0.15929885396849786, -0.1361266921313003, -0.07811725219056392, -0.07589655388861513, -0.05928060235868196, -0.016965698579962964, 0.016965698579962964, 0.019186396881911795, 0.025896553888615115, 0.06821145766733425, 0.1125778622885502, 0.13193662410579748, 0.20216110643707577, 0.22157623493966327} Lowest energies (GS shifted):{0., 0.02322852852253751, 0.08872855112841538, 0.11190071296561294, 0.1699101529063493, 0.1721308512082981, 0.18874680273823127, 0.23106170651695027, 0.2649931036768762, 0.26721380197882505, 0.27392395898552835, 0.3162388627642475, 0.36060526738546345, 0.3799640292027107, 0.450188511533989, 0.4696036400365765} Scale factor SCALE(Ninit):1.2131570881878404 Lowest energies (shifted and scaled):{0., 0.019147172900119015, 0.07313855063976431, 0.0922392607314896, 0.14005618444694037, 0.14188669619481797, 0.15558315124727398, 0.1904631385059126, 0.21843263849095665, 0.2202631502388343, 0.22579430285875315, 0.2606742901173919, 0.2972453204095105, 0.3132026618006114, 0.37108839070994537, 0.38709219490944025} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.009604`4.43399714488096} {ham, 0.199604`5.05274422932033} {maketable, 0.913765`6.412379512724554} {xi, 0.084723`5.379546319022909} {_, 0} data gammaPol=0.01624531864566039 "Success!"