NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.0201394465967895 faktor=1.3862943611198906 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.09105486831851987428`18.959303170639974 "V[1,2]="0.1593262428300822597`18.20228731489483 "V[2,1]="0 "V[2,2]="-0.2687093126753801187`18.429282718064893 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5422259405927629672`18.734180290792985, 0.416333290764246633`18.6194411392489, 0.3223394579929271253`18.508313471319685, 0.2404731157207001258`18.38106653041138, 0.1750002721142761009`18.243038723987077, 0.125598372046862139`18.098984010295712, 0.08948478532323268786`18.951749200546463, 0.06351626774417351573`18.802884970751975, 0.04499843298658257745`18.653197390283577, 0.0318490373940551047`18.503096310744596, 0.02253139990986961078`18.352788175933508, 0.01593589671657444015`18.20237650634775, 0.01126971969953756252`18.05191311440831, 0.007969367839935646847`18.90142387289972, 0.005635361110578903862`18.750921750605183, 0.003984860879210697093`18.600413163763303, 0.002817743080419762586`18.449901391951954, 0.001992452449149085571`18.299387965541886, 0.001408879355815804806`18.148873805496343, 0.0009962289293060653042`18.998359148975936, 0.0007044406795816164288`18.84784442737432, 0.0004981147646392639289`18.69732941486293, 0.0003522204923771342215`18.546814619852185, 0.0002490573795327275224`18.39629941433928, 0.0001761102918510868559`18.245784736793677, 0.0001245286518362353492`18.09526928639375, 0.00008805517930274769445`18.9447549057485, 0.00006226428209697841174`18.794238985076646, 0.00004402762087054436582`18.643725218034803, 0.00003113209720805425467`18.4932083778366, 0.00002201384169549792089`18.34269583908068} "zeta="{-0.03509075280381029893`18.545192685258264, 0.01217589646449377186`18.08550094649859, 0.007371246707053059899`18.867540946774128, 0.00517961377999712029`18.714297377608275, 0.003204200055869682075`18.505719623656873, 0.001820472179493033563`18.26018404642021, 0.0009877060260485646514`18.99462770343111, 0.0005230482906568776052`18.718541787141916, 0.0002734605771739982119`18.436894726099624, 0.0001419983704383343632`18.15228336048376, 0.00007344944976556099772`18.86598854669298, 0.00003789952059179787125`18.578633716415208, 0.00001952515692532270195`18.290594533024517, 0.00001004729662504349966`18.002049224068823, 5.164989690054254336`18.713069458952056*^-6, 2.653034611364107837`18.423742915804567*^-6, 1.361756060263494467`18.134099316703118*^-6, 6.984489156424870296`18.844134647435332*^-7, 3.580117736277221812`18.553897309150784*^-7, 1.8340357135763859`18.263407788290458*^-7, 9.389738541833701667`18.972653499463156*^-8, 4.80474352002780516`18.681670209734104*^-8, 2.457337545056153237`18.390464816181584*^-8, 1.256102341254919012`18.099025025095127*^-8, 6.417714160396679097`18.807380370078448*^-9, 3.277581807545694496`18.51555354036892*^-9, 1.673090328210173971`18.223519388651727*^-9, 8.537185488211756837`18.931314717480205*^-10, 4.354411696661126697`18.638929487896508*^-10, 2.220108585839231654`18.34637421637745*^-10, 1.131459332196009071`18.053638948816364*^-10} "nrch="2 "xi="{0.5433391951886041848`18.735071035127852, 0.4160817231975773578`18.619178639396004, 0.3222164037542124548`18.508147646196775, 0.2404042532265611987`18.380942146926735, 0.1749677490048856532`18.24295800457198, 0.1255845911016174876`18.098936355881527, 0.08947928112761863173`18.951722486336948, 0.06351413882599564464`18.8028704139629, 0.04499762322575725365`18.653189574948705, 0.03184873214763039168`18.503092148374744, 0.0225312855427087233`18.35278597149201, 0.01593585404696764782`18.202375343488832, 0.01126970383122095042`18.051912502900006, 0.007969361955600324024`18.901423552229954, 0.005635358932333468275`18.750921582736588, 0.003984860073806860588`18.60041307598546, 0.002817742783096398741`18.449901346125948, 0.001992452339561070259`18.299387941655006, 0.001408879315485201799`18.148873793064222, 0.0009962289144873094898`18.99835914251587, 0.0007044406741419675889`18.847844424020725, 0.0004981147626437225015`18.697329413123068, 0.0003522204916458117211`18.54681461895045, 0.0002490573792649958848`18.396299413872423, 0.0001761102917531767861`18.245784736552228, 0.0001245286518004700403`18.09526928626902, 0.0000880551792896915286`18.944754905684107, 0.00006226428209221369556`18.79423898504341, 0.00004402762086880693861`18.643725218017664, 0.00003113209720742128388`18.493208377827766, 0.00002201384169526749405`18.342695839076132} "zeta="{0.003634157862303517058`18.560403788475114, -0.001346151015131645578`18.129093783037632, -0.0006690303313843413372`18.825445807535, -0.0004918701170652183506`18.69185043835949, -0.0003119260164943419384`18.494051599023653, -0.0001804431080826677549`18.256340299092525, -0.00009903431955663217373`18.995785721983403, -0.00005280327903198864546`18.722660892633836, -0.00002771462508245923912`18.44270900792504, -0.00001442329018212804745`18.159064341170648, -7.470239106423149968`18.873334502878084*^-6, -3.857682529594868671`18.586326484241447*^-6, -1.988454601114306734`18.298515679953322*^-6, -1.023608323501100506`18.01013380870782*^-6, -5.263576083071422082`18.721280904884704*^-7, -2.704332627350370279`18.43206010788291*^-7, -1.388382970932107424`18.142509278237945*^-7, -7.122436887970105049`18.85262860963805*^-8, -3.651481812542718427`18.562469141830267*^-8, -1.870909421565553053`18.27205276202353*^-8, -9.580044795054099985`18.981367539788288*^-9, -4.902864805895692638`18.690449917952893*^-9, -2.507882246353549758`18.399307141026522*^-9, -1.282115133297763892`18.107927026361246*^-9, -6.551480915199468862`18.81633948023663*^-10, -3.346319591193782525`18.524567416023807*^-10, -1.708384795042481211`18.232585697466487*^-10, -8.718291317785671546`18.94043137667903*^-11, -4.447280606841592138`18.648094532677664*^-11, -2.26770035052044120099999999999999999999999999999`18.355585667190418*^-11, -1.155832922199331242`18.06289506054555*^-11} "nrch="3 "xi="{-0.002489288083734914492`18.39607516014274, 0.0005649620945924870713`18.752019310365355, 0.0002755305301166910631`18.440169727785264, 0.0001538808715763442564`18.187184637471827, 0.0000725738126547875636`18.86077993927888, 0.00003072439407111771673`18.487483326736204, 0.00001226524549890232174`18.088676245388026, 4.742619450398220003`18.676018278094283*^-6, 1.803638006511258276`18.25614937824476*^-6, 6.798412352287923984`18.832407502831934*^-7, 2.547060632150270376`18.406039283359718*^-7, 9.502689737019132064`18.977846549773986*^-8, 3.533893676240453796`18.548253478810615*^-8, 1.310440350898961261`18.11741725735816*^-8, 4.850932159773778121`18.68582520106558*^-9, 1.793623645316572422`18.253731320586994*^-9, 6.621345746176234349`18.820946265986752*^-10, 2.440507139481904068`18.38748008248345*^-10, 8.981556953620640432`18.953351628176772*^-11, 3.300111375119439778`18.51852859708503*^-11, 1.211400333276424901`18.08328768880895*^-11, 4.4440358226736843069999999999999999999999999999`18.647777551062443*^-12, 1.628642364537897133`18.21182572754987*^-12, 5.962336616311816365`18.775416491401398*^-13, 2.180439635896279343000000000000000000000000001`18.338544068005532*^-13, 7.964872978260163019`18.901178854176003*^-14, 2.907583732041151328`18.46353223031014*^-14, 1.061093901994989135`18.025753818692802*^-14, 3.8692231475464299999999999999999999999999999`18.58762377726672*^-15, 1.409618379774708733`18.1491015537969*^-15, 5.131530625197684667`18.71024692513681*^-16} "zeta="{-0.04303029918828796263`18.633774365728634, 0.0152114569328138452`18.18217081218444, 0.009011829329535234884`18.954812958246762, 0.006342222129497609474`18.80224144865381, 0.003925217199271641665`18.59386369314122, 0.002231234951920500233`18.348545304461343, 0.001211038269814813072`18.083157867426113, 0.000641480217187935433`18.807183267572064, 0.0003354324894537949139`18.525605125375453, 0.0001741952138474642676`18.241036218248045, 0.00009010911433165331704`18.954768721098375, 0.00004649784019989494746`18.66743278060927, 0.000023955639584700455`18.37940777045186, 0.00001232746919415063293`18.0908739259201, 6.337295830282076149`18.801903980828936*^-6, 3.255264020986889011`18.512586218160024*^-6, 1.67090084385227857`18.22295067835209*^-6, 8.570250351706829432`18.932993508594933*^-7, 4.393020547081322056`18.642763234556732*^-7, 2.250507214925355389`18.352280409586093*^-7, 1.152212217737081414`18.061532476052516*^-7, 5.895969745915272392`18.77055524635443*^-8, 3.01547436430654897`18.479355640720243*^-8, 1.541421353365904964`18.187921370988867*^-8, 7.875570123464342054`18.896282002780655*^-9, 4.022168354586064957`18.60446024476334*^-9, 2.053198554931885996`18.31243094992667*^-9, 1.047685524682976153`18.020230943534997*^-9, 5.343800021092984327`18.72785019734158*^-10, 2.724577879365436645`18.435299226296014*^-10, 1.388571022532735982`18.142568097917913*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.04303029918828796263`18.633774365728634, 0.0152114569328138452`18.18217081218444, 0.009011829329535234884`18.954812958246762, 0.006342222129497609474`18.80224144865381, 0.003925217199271641665`18.59386369314122, 0.002231234951920500233`18.348545304461343, 0.001211038269814813072`18.083157867426113, 0.000641480217187935433`18.807183267572064, 0.0003354324894537949139`18.525605125375453, 0.0001741952138474642676`18.241036218248045, 0.00009010911433165331704`18.954768721098375, 0.00004649784019989494746`18.66743278060927, 0.000023955639584700455`18.37940777045186, 0.00001232746919415063293`18.0908739259201, 6.337295830282076149`18.801903980828936*^-6, 3.255264020986889011`18.512586218160024*^-6, 1.67090084385227857`18.22295067835209*^-6, 8.570250351706829432`18.932993508594933*^-7, 4.393020547081322056`18.642763234556732*^-7, 2.250507214925355389`18.352280409586093*^-7, 1.152212217737081414`18.061532476052516*^-7, 5.895969745915272392`18.77055524635443*^-8, 3.01547436430654897`18.479355640720243*^-8, 1.541421353365904964`18.187921370988867*^-8, 7.875570123464342054`18.896282002780655*^-9, 4.022168354586064957`18.60446024476334*^-9, 2.053198554931885996`18.31243094992667*^-9, 1.047685524682976153`18.020230943534997*^-9, 5.343800021092984327`18.72785019734158*^-10, 2.724577879365436645`18.435299226296014*^-10, 1.388571022532735982`18.142568097917913*^-10} BAND="manual_V" thetaCh={"0.008290989045", "0.07220469472", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5422259406 0.4163332908 0.322339458 0.2404731157 0.1750002721 0.125598372 0.08948478532 0.06351626774 0.04499843299 0.03184903739 0.02253139991 0.01593589672 0.0112697197 0.00796936784 0.005635361111 0.003984860879 0.00281774308 0.001992452449 0.001408879356 0.0009962289293 0.0007044406796 0.0004981147646 0.0003522204924 0.0002490573795 0.0001761102919 0.0001245286518 0.0000880551793 0.0000622642821 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 1) -0.0350907528 0.01217589646 0.007371246707 0.00517961378 0.003204200056 0.001820472179 0.000987706026 0.0005230482907 0.0002734605772 0.0001419983704 0.00007344944977 0.00003789952059 0.00001952515693 0.00001004729663 5.16498969e-6 2.653034611e-6 1.36175606e-6 6.984489156e-7 3.580117736e-7 1.834035714e-7 9.389738542e-8 4.80474352e-8 2.457337545e-8 1.256102341e-8 6.41771416e-9 3.277581808e-9 1.673090328e-9 8.537185488e-10 4.354411697e-10 2.220108586e-10 1.131459332e-10 Precision last xi:18.34269583908068 Precision last zeta: 18.053638948816364 Discretization (channel 2) "xitable" (channel 2) 0.5433391952 0.4160817232 0.3222164038 0.2404042532 0.174967749 0.1255845911 0.08947928113 0.06351413883 0.04499762323 0.03184873215 0.02253128554 0.01593585405 0.01126970383 0.007969361956 0.005635358932 0.003984860074 0.002817742783 0.00199245234 0.001408879315 0.0009962289145 0.0007044406741 0.0004981147626 0.0003522204916 0.0002490573793 0.0001761102918 0.0001245286518 0.00008805517929 0.00006226428209 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 2) 0.003634157862 -0.001346151015 -0.0006690303314 -0.0004918701171 -0.0003119260165 -0.0001804431081 -0.00009903431956 -0.00005280327903 -0.00002771462508 -0.00001442329018 -7.470239106e-6 -3.85768253e-6 -1.988454601e-6 -1.023608324e-6 -5.263576083e-7 -2.704332627e-7 -1.388382971e-7 -7.122436888e-8 -3.651481813e-8 -1.870909422e-8 -9.580044795e-9 -4.902864806e-9 -2.507882246e-9 -1.282115133e-9 -6.551480915e-10 -3.346319591e-10 -1.708384795e-10 -8.718291318e-11 -4.447280607e-11 -2.267700351e-11 -1.155832922e-11 Precision last xi:18.342695839076132 Precision last zeta: 18.06289506054555 Discretization (channel 3) "xitable" (channel 3) -0.002489288084 0.0005649620946 0.0002755305301 0.0001538808716 0.00007257381265 0.00003072439407 0.0000122652455 4.74261945e-6 1.803638007e-6 6.798412352e-7 2.547060632e-7 9.502689737e-8 3.533893676e-8 1.310440351e-8 4.85093216e-9 1.793623645e-9 6.621345746e-10 2.440507139e-10 8.981556954e-11 3.300111375e-11 1.211400333e-11 4.444035823e-12 1.628642365e-12 5.962336616e-13 2.180439636e-13 7.964872978e-14 2.907583732e-14 1.061093902e-14 3.869223148e-15 1.40961838e-15 5.131530625e-16 "zetatable" (channel 3) -0.04303029919 0.01521145693 0.00901182933 0.006342222129 0.003925217199 0.002231234952 0.00121103827 0.0006414802172 0.0003354324895 0.0001741952138 0.00009010911433 0.0000464978402 0.00002395563958 0.00001232746919 6.33729583e-6 3.255264021e-6 1.670900844e-6 8.570250352e-7 4.393020547e-7 2.250507215e-7 1.152212218e-7 5.895969746e-8 3.015474364e-8 1.541421353e-8 7.875570123e-9 4.022168355e-9 2.053198555e-9 1.047685525e-9 5.343800021e-10 2.724577879e-10 1.388571023e-10 Precision last xi:18.71024692513681 Precision last zeta: 18.142568097917913 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.04303029919 0.01521145693 0.00901182933 0.006342222129 0.003925217199 0.002231234952 0.00121103827 0.0006414802172 0.0003354324895 0.0001741952138 0.00009010911433 0.0000464978402 0.00002395563958 0.00001232746919 6.33729583e-6 3.255264021e-6 1.670900844e-6 8.570250352e-7 4.393020547e-7 2.250507215e-7 1.152212218e-7 5.895969746e-8 3.015474364e-8 1.541421353e-8 7.875570123e-9 4.022168355e-9 2.053198555e-9 1.047685525e-9 5.343800021e-10 2.724577879e-10 1.388571023e-10 Precision last xi:MachinePrecision Precision last zeta: 18.142568097917913 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.008290989045", "0.07220469472", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0008290989044502994", "0.00722046947184752", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.016245318646018622", "0.04794107649789812", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> -0.22247005662047376 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.987993103469421*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.571006879157711*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=-1. 1-abs=0. orthogonality check=2.914335439641036*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24634587335467245, -0.2222981866638349, -0.16157538045862463, -0.1375839320280576, -0.07584266457633544, -0.07218592295121713, -0.05873839146666845, -0.01572829747075339, 0.01572829747075339, 0.019385039095871692, 0.02218592295121712, 0.0651960169471322, 0.1138664991814826, 0.13438396624186438, 0.19948960088059506, 0.22006330620124767} Lowest energies (GS shifted):{0., 0.02404768669083754, 0.08477049289604782, 0.10876194132661485, 0.17050320877833702, 0.17415995040345533, 0.187607481888004, 0.23061757588391907, 0.26207417082542583, 0.26573091245054414, 0.2685317963058896, 0.3115418903018047, 0.36021237253615507, 0.38072983959653683, 0.4458354742352675, 0.4664091795559201} Scale factor SCALE(Ninit):1.0201394465967895 Lowest energies (shifted and scaled):{0., 0.023572940710273698, 0.08309696598719352, 0.10661477868486254, 0.16713715889248276, 0.17072170964906538, 0.1839037618963439, 0.22606475678718732, 0.25690034014439084, 0.2604848909009735, 0.2632304801090854, 0.30539147499992886, 0.35310111155669205, 0.373213525725979, 0.4370338542662826, 0.45720139644817454} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.009528`4.4305467419706925} {ham, 0.255748`5.1603872352885904} {maketable, 1.05568`6.475077287361223} {xi, 0.102182`5.460919392336082} {_, 0} data gammaPol=0.016245318646018622 "Success!"