NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.715663207404297 faktor=0.8242955588659627 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.1405122931938432296`18.147714321626864 "V[1,2]="0.236253799629205119`18.373378801920886 "V[2,1]="0 "V[2,2]="-0.1741291848676512488`18.240871567008984 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5714448660260182944`18.756974335281214, 0.5409184305934917614`18.73313177931355, 0.590664364413264642`18.771340770069692, 0.5167246568555311503`18.71325918552632, 0.3412057454179090454`18.533016335456466, 0.2216154808902823792`18.3456000946412, 0.1529548620469186604`18.18456328665961, 0.1075682172116614599`18.031683970878994, 0.07592866563760634901`18.88040576769938, 0.0536501507308144443`18.729570946459827, 0.03792347671577057239`18.578908145365915, 0.02681154894120099316`18.428321904515695, 0.01895709905624425387`18.277771879401996, 0.01340415602821408945`18.127239474504776, 0.009477980216128879115`18.976715797839326, 0.006701876738735252498`18.826196436006057, 0.004738918918665563709`18.675679278128104, 0.003350913048147637855`18.52516315860232, 0.002369450559214441622`18.374647651172427, 0.001675453278830232482`18.224132321739106, 0.001184724206922650952`18.07361726228547, 0.0008377261610838003872`18.9231020780984, 0.0005923620122238354739`18.772587199730072, 0.0004188629588404162878`18.62207195624929, 0.0002961810417802617748`18.471557256367092, 0.000209431397513598882`18.32104179073694, 0.0001480905704382291506`18.170527406009253, 0.0001047156243651131078`18.02001148654319, 0.00007404533759187063673`18.869497717524734, 0.00005235773788985459935`18.718980874640064, 0.00003702272111901354796`18.568468335636283} "zeta="{0.007350615688402555893`18.866323717162725, -0.001197292710506856015`18.07820033839086, 0.001009072129243177973`18.00392221104632, -0.001401246172539517051`18.146514439342734, -0.002852148903455686228`18.4551721951844, -0.001392576728586440065`18.143819133385204, -0.0005868149477455632994`18.76850116795368, -0.0002868530962545175938`18.457659541961164, -0.0001470382326879464635`18.167430274112185, -0.00007588937362382705846`18.880180968258795, -0.00003918994449557777722`18.593174648390548, -0.00002022626514081410874`18.305915695994585, -0.00001043017217061345615`18.01829147737478, -5.374326088372780179`18.730324013806204*^-6, -2.766884127520068753`18.441990971995185*^-6, -1.423255730025943265`18.153282940956196*^-6, -7.315585867790847319`18.864249112274052*^-7, -3.757432403941284558`18.574891176388856*^-7, -1.928479780200110015`18.28521508971824*^-7, -9.891746624065690449`18.99527298342931*^-8, -5.070579151449945268`18.705057566416997*^-8, -2.597534147152586978`18.41456126549677*^-8, -1.329914802872961192`18.12382382004431*^-8, -6.805328284359895612`18.832849080112045*^-9, -3.480415357927841709`18.54163107638675*^-9, -1.779173649906175482`18.25021833791844*^-9, -9.090670513215949799`18.9585959172649*^-10, -4.642630226971502575`18.666764094654553*^-10, -2.36995046740616994`18.37473926923501*^-10, -1.209338470772431018`18.082547868616064*^-10, -6.16801772842238008000000000000000000000000000001`18.790145613315428*^-11} "nrch="2 "xi="{0.5700613763014104052`18.75592161699535, 0.5411292231315171231`18.733300988196234, 0.5905194439458788525`18.77123420213476, 0.5168883219404838414`18.71339672026191, 0.3414768129062608626`18.533361219382872, 0.221712265584537771`18.345789719854825, 0.1529854586060948318`18.18465015273095, 0.1075792257500610971`18.0317284143306, 0.07593278041372392151`18.880429302633477, 0.05365169495999928123`18.729583446714777, 0.03792405533579156635`18.578914771592913, 0.02681176513243927612`18.428325406375414, 0.01895717967935060463`18.277773726419603, 0.01340418605322000155`18.12724044731349, 0.009477991374434398264`18.976716309128392, 0.006701880877133469493`18.826196704182127, 0.004738920450501002586`18.675679418511933, 0.003350913613950350263`18.525163231933075, 0.002369450767934076947`18.37464768942846, 0.001675453355762727362`18.22413234168079, 0.00118472423524144119`18.07361727266653, 0.000837726171494015937`18.923102083495266, 0.0005923620160457202313`18.77258720253211, 0.000418862960241496603`18.62207195770199, 0.0002961810422934538028`18.471557257119592, 0.0002094313977014838543`18.321041791126554, 0.00014809057050695304`18.170527406210795, 0.0001047156243902277838`18.02001148664735, 0.00007404533760103974805`18.869497717578515, 0.00005235773789319862444`18.7189808746678, 0.00003702272112023234705`18.56846833565058} "zeta="{-0.04035583997019511621`18.605906391184668, 0.005223943083498780796`18.717998436517963, -0.005365735486865213892`18.729629259572167, 0.007677704166053938434`18.88523137405834, 0.01593639841911211052`18.202390178826796, 0.007836614745091797715`18.89412849699207, 0.003271593668495529489`18.514759359030954, 0.001588003736130464468`18.200851519866227, 0.0008112181513423692442`18.909137659617016, 0.0004179315429854032972`18.621105150343276, 0.0002156066276793977652`18.333662106794616, 0.0001112114080007959254`18.04614933920355, 0.00005732839512603927964`18.758369784131887, 0.00002953251521897703777`18.470300436440354, 0.00001520178972422591499`18.18189472094473, 7.818624256227741631`18.893130342511125*^-6, 4.01836686811523208`18.604049584359622*^-6, 2.063718956473873831`18.314650553438145*^-6, 1.059100737446152768`18.024937270434464*^-6, 5.432011441069082247`18.734960675997765*^-7, 2.784280097914004748`18.444712923057605*^-7, 1.426218714997789528`18.154186131008853*^-7, 7.301628238738219439`18.863419717140864*^-8, 3.73609059829551454`18.5724173991059*^-8, 1.91061471072394067`18.281173117260693*^-8, 9.76641596092381233`18.989735217356134*^-9, 4.989864029063593843`18.698088711508777*^-9, 2.548202034728280285`18.406233858156725*^-9, 1.300729319558315109`18.114186929726174*^-9, 6.637038136078162855`18.821974313082865*^-10, 3.384945740475238037`18.52955171148466*^-10} "nrch="3 "xi="{-0.002503194785428808616`18.39849464543142, 0.0003797402519629212232`18.579486634218696, -0.0002611524084667804827`18.416894035453538, 0.0002949756453496684533`18.46978615995483, 0.0004897051441227938872`18.689934666101966, 0.0001753094305838428439`18.243805279130655, 0.00005549622921086353117`18.74426347522089, 0.0000199803140438566732`18.300602310038222, 7.470761021033025457`18.873364844171608*^-6, 2.804192404514425295`18.447807808635627*^-6, 1.050825517267363922`18.021530610244465*^-6, 3.92642231622905694`18.593997009411723*^-7, 1.464299600336661802`18.165629943840635*^-7, 5.453302374285768201`18.736659579081103*^-8, 2.026646093147033519`18.30677791583034*^-8, 7.51646468144496591`18.87601362112902*^-9, 2.782238354211604969`18.444394333234968*^-9, 1.027655865854080558`18.011847705532674*^-9, 3.790934035843658404`18.57874622755006*^-10, 1.397310306306583239`18.14529286234304*^-10, 5.143488919359461899`18.711257808569144*^-11, 1.89078814878932691`18.27664287153889*^-11, 6.9416184870409470679999999999999999999999999999`18.841460741066026*^-12, 2.544756332031837399`18.405646203678558*^-12, 9.321011461355207193999999999999999999999999999`18.96946304199462*^-13, 3.412519984958742705999999999999999999999999999`18.533075203442774*^-13, 1.248220157770104618`18.09629119181451*^-13, 4.56153161488201904299999999999999999999999999`18.65911068920118*^-14, 1.665366139121499002`18.22150973016605*^-14, 6.073692811523653856`18.78345282287466*^-15, 2.213690641011562421`18.345116928968654*^-15} "zeta="{-0.04338288870754694604`18.637318466718718, 0.005779109532189859177`18.76186092578233, -0.005746821968469160817`18.759427743277936, 0.008176052472627006601`18.912543670033696, 0.01694281331397719248`18.228985525551447, 0.00835076903010855548`18.92172647190918, 0.00349770201454150222`18.54378280715729, 0.001701043204636374642`18.230715344357357, 0.0008698008011313610116`18.9394198033371, 0.0004483412293812385542`18.651608678347028, 0.0002313590533888359058`18.364286498691694, 0.0001193551768094922163`18.076841260469198, 0.00006153194819368206327`18.789100665719776, 0.00003169968469686736205`18.501054942498776, 0.00001631791244901521591`18.212664598666475, 8.392881575949832584`18.923911095235784*^-6, 4.313588547069893498`18.634838717433396*^-6, 2.21537178125789487`18.345446619498045*^-6, 1.13694480390004479`18.055739381184218*^-6, 5.831338655962211966`18.765768263877714*^-7, 2.988997681211204326`18.47552557812474*^-7, 1.531099900445685073`18.185003528253358*^-7, 7.838655909443430116`18.894241600802413*^-8, 4.010915790741688624`18.603243544055914*^-8, 2.051177847851566029`18.312003317604823*^-8, 1.04850208450428589`18.020569298213676*^-8, 5.357059939347303055`18.728926505656442*^-9, 2.735742406558301327`18.437075202449776*^-9, 1.396470227093931317`18.145031680927357*^-9, 7.125614686241271207`18.852822334410796*^-10, 3.63415016733063785`18.560402868898166*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.04338288870754694604`18.637318466718718, 0.005779109532189859177`18.76186092578233, -0.005746821968469160817`18.759427743277936, 0.008176052472627006601`18.912543670033696, 0.01694281331397719248`18.228985525551447, 0.00835076903010855548`18.92172647190918, 0.00349770201454150222`18.54378280715729, 0.001701043204636374642`18.230715344357357, 0.0008698008011313610116`18.9394198033371, 0.0004483412293812385542`18.651608678347028, 0.0002313590533888359058`18.364286498691694, 0.0001193551768094922163`18.076841260469198, 0.00006153194819368206327`18.789100665719776, 0.00003169968469686736205`18.501054942498776, 0.00001631791244901521591`18.212664598666475, 8.392881575949832584`18.923911095235784*^-6, 4.313588547069893498`18.634838717433396*^-6, 2.21537178125789487`18.345446619498045*^-6, 1.13694480390004479`18.055739381184218*^-6, 5.831338655962211966`18.765768263877714*^-7, 2.988997681211204326`18.47552557812474*^-7, 1.531099900445685073`18.185003528253358*^-7, 7.838655909443430116`18.894241600802413*^-8, 4.010915790741688624`18.603243544055914*^-8, 2.051177847851566029`18.312003317604823*^-8, 1.04850208450428589`18.020569298213676*^-8, 5.357059939347303055`18.728926505656442*^-9, 2.735742406558301327`18.437075202449776*^-9, 1.396470227093931317`18.145031680927357*^-9, 7.125614686241271207`18.852822334410796*^-10, 3.63415016733063785`18.560402868898166*^-10} BAND="manual_V" thetaCh={"0.01974370454", "0.03032097302", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.571444866 0.5409184306 0.5906643644 0.5167246569 0.3412057454 0.2216154809 0.152954862 0.1075682172 0.07592866564 0.05365015073 0.03792347672 0.02681154894 0.01895709906 0.01340415603 0.009477980216 0.006701876739 0.004738918919 0.003350913048 0.002369450559 0.001675453279 0.001184724207 0.0008377261611 0.0005923620122 0.0004188629588 0.0002961810418 0.0002094313975 0.0001480905704 0.0001047156244 0.00007404533759 0.00005235773789 0.00003702272112 "zetatable" (channel 1) 0.007350615688 -0.001197292711 0.001009072129 -0.001401246173 -0.002852148903 -0.001392576729 -0.0005868149477 -0.0002868530963 -0.0001470382327 -0.00007588937362 -0.0000391899445 -0.00002022626514 -0.00001043017217 -5.374326088e-6 -2.766884128e-6 -1.42325573e-6 -7.315585868e-7 -3.757432404e-7 -1.92847978e-7 -9.891746624e-8 -5.070579151e-8 -2.597534147e-8 -1.329914803e-8 -6.805328284e-9 -3.480415358e-9 -1.77917365e-9 -9.090670513e-10 -4.642630227e-10 -2.369950467e-10 -1.209338471e-10 -6.168017728e-11 Precision last xi:18.568468335636283 Precision last zeta: 18.790145613315428 Discretization (channel 2) "xitable" (channel 2) 0.5700613763 0.5411292231 0.5905194439 0.5168883219 0.3414768129 0.2217122656 0.1529854586 0.1075792258 0.07593278041 0.05365169496 0.03792405534 0.02681176513 0.01895717968 0.01340418605 0.009477991374 0.006701880877 0.004738920451 0.003350913614 0.002369450768 0.001675453356 0.001184724235 0.0008377261715 0.000592362016 0.0004188629602 0.0002961810423 0.0002094313977 0.0001480905705 0.0001047156244 0.0000740453376 0.00005235773789 0.00003702272112 "zetatable" (channel 2) -0.04035583997 0.005223943083 -0.005365735487 0.007677704166 0.01593639842 0.007836614745 0.003271593668 0.001588003736 0.0008112181513 0.000417931543 0.0002156066277 0.000111211408 0.00005732839513 0.00002953251522 0.00001520178972 7.818624256e-6 4.018366868e-6 2.063718956e-6 1.059100737e-6 5.432011441e-7 2.784280098e-7 1.426218715e-7 7.301628239e-8 3.736090598e-8 1.910614711e-8 9.766415961e-9 4.989864029e-9 2.548202035e-9 1.30072932e-9 6.637038136e-10 3.38494574e-10 Precision last xi:18.56846833565058 Precision last zeta: 18.52955171148466 Discretization (channel 3) "xitable" (channel 3) -0.002503194785 0.000379740252 -0.0002611524085 0.0002949756453 0.0004897051441 0.0001753094306 0.00005549622921 0.00001998031404 7.470761021e-6 2.804192405e-6 1.050825517e-6 3.926422316e-7 1.4642996e-7 5.453302374e-8 2.026646093e-8 7.516464681e-9 2.782238354e-9 1.027655866e-9 3.790934036e-10 1.397310306e-10 5.143488919e-11 1.890788149e-11 6.941618487e-12 2.544756332e-12 9.321011461e-13 3.412519985e-13 1.248220158e-13 4.561531615e-14 1.665366139e-14 6.073692812e-15 2.213690641e-15 "zetatable" (channel 3) -0.04338288871 0.005779109532 -0.005746821968 0.008176052473 0.01694281331 0.00835076903 0.003497702015 0.001701043205 0.0008698008011 0.0004483412294 0.0002313590534 0.0001193551768 0.00006153194819 0.0000316996847 0.00001631791245 8.392881576e-6 4.313588547e-6 2.215371781e-6 1.136944804e-6 5.831338656e-7 2.988997681e-7 1.5310999e-7 7.838655909e-8 4.010915791e-8 2.051177848e-8 1.048502085e-8 5.357059939e-9 2.735742407e-9 1.396470227e-9 7.125614686e-10 3.634150167e-10 Precision last xi:18.345116928968654 Precision last zeta: 18.560402868898166 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.04338288871 0.005779109532 -0.005746821968 0.008176052473 0.01694281331 0.00835076903 0.003497702015 0.001701043205 0.0008698008011 0.0004483412294 0.0002313590534 0.0001193551768 0.00006153194819 0.0000316996847 0.00001631791245 8.392881576e-6 4.313588547e-6 2.215371781e-6 1.136944804e-6 5.831338656e-7 2.988997681e-7 1.5310999e-7 7.838655909e-8 4.010915791e-8 2.051177848e-8 1.048502085e-8 5.357059939e-9 2.735742407e-9 1.396470227e-9 7.125614686e-10 3.634150167e-10 Precision last xi:MachinePrecision Precision last zeta: 18.560402868898166 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.01974370454", "0.03032097302", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0019743704538592566", "0.0030320973022672664", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.025069137090306462", "0.03106680780484008", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> 0.02538287586553084 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-0.9999999999999998 1-abs=2.220446049250313*^-16 orthogonality check=3.941291737419306*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1. 1-abs=0. orthogonality check=5.325731151063567*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=3.1086244689504383*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24738856940681264, -0.2238621205464767, -0.16014976886682353, -0.1366796373244448, -0.07725392184632686, -0.07450809540355842, -0.0590721668565247, -0.01650261214089628, 0.01650261214089628, 0.01924843858366474, 0.024508095403558403, 0.06707765011918675, 0.11306721898751441, 0.13285141300202175, 0.20116047641127807, 0.22100098774374313} Lowest energies (GS shifted):{0., 0.023526448860335947, 0.08723880053998911, 0.11070893208236784, 0.1701346475604858, 0.17288047400325424, 0.18831640255028795, 0.23088595726591638, 0.2638911815477089, 0.2666370079904774, 0.27189666481037106, 0.3144662195259994, 0.36045578839432707, 0.3802399824088344, 0.44854904581809074, 0.46838955715055575} Scale factor SCALE(Ninit):1.715663207404297 Lowest energies (shifted and scaled):{0., 0.013712743129772047, 0.05084844167753447, 0.06452835941493686, 0.09916552784149871, 0.10076597391443323, 0.10976303608865064, 0.1345753387200242, 0.15381292809033398, 0.15541337416326853, 0.1584790439271211, 0.1832913465584946, 0.21009705566844708, 0.2216285695046852, 0.26144353033992057, 0.27300786956852857} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007926`4.3505990614941465} {ham, 0.219963`5.094924623403841} {maketable, 1.094592`6.490797263203654} {xi, 0.0887119999999999999`5.399527363962276} {_, 0} data gammaPol=0.025069137090306462 "Success!"