NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.4426950408889634 faktor=0.9802581434685472 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.1405122931982251411`18.147714321640407 "V[1,2]="0.2362537996365728366`18.373378801934432 "V[2,1]="0 "V[2,2]="-0.1741291848730815439`18.240871567022527 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5928357157914819764`18.77293436012631, 0.560081269469340115`18.748251049008452, 0.5066746548063469913`18.704729180286236, 0.3765527941645842036`18.57582587457913, 0.2586553075184612194`18.41272139441079, 0.180375079343546435`18.256176535139428, 0.1273327822995703462`18.10494022878283, 0.09007927087116057718`18.95462486221072, 0.06372399861746277927`18.804303019530444, 0.0450714752788267739`18.65390177362385, 0.03187478516685944563`18.503447266346736, 0.02254048615541344794`18.352963278717034, 0.01593910522536197763`18.202463937725405, 0.01127085266401919167`18.05195677259188, 0.00796976833718653771`18.90144569763905, 0.005635502359389668765`18.750932635943162, 0.003984911008352833017`18.600418627109082, 0.002817760529118970309`18.449904081285258, 0.001992458857388470887`18.29938936234236, 0.001408881376850060338`18.148874428490352, 0.0009962298861560441119`18.998359566103417, 0.0007044407650251797862`18.847844480051098, 0.0004981150356516447601`18.697329651152153, 0.0003522203398304047956`18.54681443175916, 0.000249057569031730275`18.396299744778553, 0.0001761101094775238815`18.245784287053507, 0.0001245288291752747985`18.09526990486436, 0.00008805499263256890894`18.94475398507677, 0.00006226445874007797336`18.79424021716368, 0.00004402743418468534027`18.64372337653602, 0.000031132273504035974`18.493210837168352} "zeta="{0.007629992932952131719`18.882524135703072, -0.001184365403297656929`18.073485712651433, -0.0008988227009527106643`18.953674032565512, -0.002095227628023808158`18.321231212134997, -0.001507196134914118215`18.178169771736208, -0.0007603411232853730028`18.881008480073675, -0.0003861685715941962842`18.586776925739024, -0.0002008432720451949934`18.302857288083693, -0.000104538244757544982`18.019275203830297, -0.00005424296795597976687`18.734343444347953, -0.00002807094713921728601`18.44825706637139, -0.00001449871763651638666`18.161329592027183, -7.478227981634135025`18.87379870094343*^-6, -3.852620273287365591`18.58575620565384*^-6, -1.982846715756972638`18.297289142307186*^-6, -1.019716634077243205`18.0084795037678*^-6, -5.239849076287936081`18.719318778151806*^-7, -2.690429630724269093`18.429821637383142*^-7, -1.380486690687819188`18.140032223949785*^-7, -7.078561036611265122`18.849944981224397*^-8, -3.627291221844318795`18.559582424883637*^-8, -1.857767083269025749`18.268991263590973*^-8, -9.509337877829413376`18.978150278660248*^-9, -4.864781532726420612`18.68706334177564*^-9, -2.487478052911195966`18.39575925764224*^-9, -1.271265846227209804`18.104236379410562*^-9, -6.493793737828766162`18.812498490026755*^-10, -3.315856449457808719`18.520595720745*^-10, -1.692359575445762312`18.228492643006152*^-10, -8.63399416458240233999999999999999999999999999999`18.936211750795753*^-11, -4.402950729108111763`18.643743825546697*^-11} "nrch="2 "xi="{0.5913958104462556653`18.771878243581174, 0.5602703589570853238`18.748397646772602, 0.5067763589234162147`18.704816346881127, 0.3767601752392354397`18.5760649902251, 0.2587726564886683733`18.412918384193475, 0.1804205027824069829`18.256285888745335, 0.1273499847444758137`18.104998897274584, 0.09008582942242210345`18.954656481460162, 0.06372648646967826735`18.80431997451478, 0.04507241353630045411`18.65391081428204, 0.03187513737539103553`18.503452065167366, 0.02254061792152591004`18.352965817487842, 0.01593915436878251893`18.202465276739307, 0.01127087093529376485`18.051957476629763, 0.007969775118060538899`18.901446067147273, 0.005635504872935384081`18.750932829647066, 0.003984911938378924746`18.600418728467723, 0.002817760872649476001`18.449904134232767, 0.001992458984070354187`18.2993893899551, 0.001408881423478557625`18.14887444286381, 0.0009962299033010684444`18.998359573577588, 0.0007044407713254233162`18.84784448393526, 0.0004981150379640779911`18.69732965316831, 0.0003522203406782021596`18.546814432804513, 0.0002490575693422031681`18.396299745319943, 0.0001761101095910720768`18.24578428733352, 0.0001245288292167732601`18.095269905009086, 0.00008805499264773063606`18.944753985151547, 0.00006226445874561263572`18.794240217202283, 0.00004402743418670394175`18.64372337655593, 0.00003113227350477162551`18.493210837178616} "zeta="{-0.04189112608893558881`18.62212203492884, 0.005083217141407443164`18.70613866199482, 0.005200965619557783651`18.716083982925824, 0.01168372087054449573`18.067581172930893, 0.00844944316426880955`18.926828088990664, 0.004245219610857807642`18.62790016179239, 0.00214226468273639092`18.330873128097316, 0.001109624701919585416`18.045176116223086, 0.0005762139346308125295`18.760583756651954, 0.000298582443831719405`18.475064268321496, 0.0001543959798229743447`18.188635987946423, 0.00007970898641301427513`18.90150728663548, 0.00004110065662750618233`18.613848760256232, 0.00002116983548575212886`18.325717483059204, 0.00001089389476407208172`18.037183175636624, 5.601684421900335255`18.74831863863825*^-6, 2.878131047422112613`18.459110564401346*^-6, 1.4776479656508206`18.169570980211944*^-6, 7.581279226843855277`18.8797424924771*^-7, 3.887038155975245712`18.58961880377718*^-7, 1.991690795080468647`18.299221916209383*^-7, 1.019995223431431848`18.008598137995026*^-7, 5.220668841669090218`18.717726145844875*^-8, 2.670605208214020719`18.42660969162805*^-8, 1.365455009552013476`18.135277395120063*^-8, 6.97794537406694198`18.84372756530783*^-9, 3.564214956433824417`18.551963888287936*^-9, 1.819853120878184692`18.26003633778386*^-9, 9.28772817089528245`18.967909496178432*^-10, 4.738117433173136897`18.675605820411032*^-10, 2.416106008148118233`18.38311598530661*^-10} "nrch="3 "xi="{-0.002605226142319397569`18.415845427481507, 0.0003405934826681747255`18.532236333384866, 0.0001834019468177471176`18.2634039414088, 0.0003745668066054523028`18.573529288397427, 0.0002124077121831596283`18.327170281231393, 0.00008234298974388735743`18.91562663149436, 0.00003121023715276209659`18.494297068689193, 0.00001190442999710171698`18.07570860553344, 4.516786736284793501`18.654829585482535*^-6, 1.703659834625082869`18.231382884624985*^-6, 6.395734977188660448`18.805890459400466*^-7, 2.392820317092598271`18.378910087570798*^-7, 8.924421400732726877`18.950580068973075*^-8, 3.318088168186821567`18.520887921907836*^-8, 1.231422428719696034`18.090407059423153*^-8, 4.564669975155421559`18.65940938358991*^-9, 1.688956102680733055`18.227618362056933*^-9, 6.238624839814256762`18.795088870083433*^-10, 2.300584793419628622`18.36183824483211*^-10, 8.467890705654621631`18.927775243981596*^-11, 3.11359398442206334700000000000000000000000000001`18.49326197951618*^-11, 1.14414543219144240199999999999999999999999999999`18.058481231086297*^-11, 4.199456717180781716`18.62319310944745*^-12, 1.539628524593972187`18.187415948641704*^-12, 5.638292040009561737`18.751147566760828*^-13, 2.06207345859652782`18.31430413238051*^-13, 7.536260364724480868`18.877155894165107*^-14, 2.753422981437756682`18.439872932931195*^-14, 1.005111684675638194`18.00221432179973*^-14, 3.665857799093166105`18.564175614399538*^-15, 1.335971041031483067`18.125797044324756*^-15} "zeta="{-0.04503309175961733163`18.65353176459667, 0.00564063453404100093`18.751327961985442, 0.005497495557728931427`18.740164887099752, 0.01242901807016187458`18.094436819425624, 0.009002283655187301795`18.954352693110547, 0.004534558814372093363`18.65653503917905, 0.002292991835765232495`18.36040250842012, 0.001189129659134352925`18.075229211369336, 0.0006179134259447211083`18.79092763161264, 0.000320310584436750488`18.505571289854974, 0.0001656664013806294128`18.21923443856686, 0.00008553765168409864354`18.932157323140373, 0.00004410921749478825945`18.64452935338689, 0.00002272047985018643698`18.35641749931396, 0.00001169220905275229132`18.0678965717936, 6.012319855516478065`18.779042077003147*^-6, 3.089172268132649372`18.48984212747055*^-6, 1.586023128489480198`18.200309516211167*^-6, 8.137430172319121335`18.91048727489034*^-7, 4.172240354049221935`18.62036931927284*^-7, 2.137852719005402124`18.329977782478714*^-7, 1.094861190469385955`18.039359061610366*^-7, 5.603919185511741458`18.74849186366952*^-8, 2.866684949589175575`18.45737996634264*^-8, 1.465723401294837624`18.166052021720425*^-8, 7.490423062937350877`18.874506347567344*^-9, 3.826014802351032987`18.582746645923095*^-9, 1.953542731211101418`18.29082291529268*^-9, 9.970105104554365985`18.998699736655425*^-10, 5.086271899501256868`18.706399572767868*^-10, 2.593660421579022468`18.413913114890587*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.04503309175961733163`18.65353176459667, 0.00564063453404100093`18.751327961985442, 0.005497495557728931427`18.740164887099752, 0.01242901807016187458`18.094436819425624, 0.009002283655187301795`18.954352693110547, 0.004534558814372093363`18.65653503917905, 0.002292991835765232495`18.36040250842012, 0.001189129659134352925`18.075229211369336, 0.0006179134259447211083`18.79092763161264, 0.000320310584436750488`18.505571289854974, 0.0001656664013806294128`18.21923443856686, 0.00008553765168409864354`18.932157323140373, 0.00004410921749478825945`18.64452935338689, 0.00002272047985018643698`18.35641749931396, 0.00001169220905275229132`18.0678965717936, 6.012319855516478065`18.779042077003147*^-6, 3.089172268132649372`18.48984212747055*^-6, 1.586023128489480198`18.200309516211167*^-6, 8.137430172319121335`18.91048727489034*^-7, 4.172240354049221935`18.62036931927284*^-7, 2.137852719005402124`18.329977782478714*^-7, 1.094861190469385955`18.039359061610366*^-7, 5.603919185511741458`18.74849186366952*^-8, 2.866684949589175575`18.45737996634264*^-8, 1.465723401294837624`18.166052021720425*^-8, 7.490423062937350877`18.874506347567344*^-9, 3.826014802351032987`18.582746645923095*^-9, 1.953542731211101418`18.29082291529268*^-9, 9.970105104554365985`18.998699736655425*^-10, 5.086271899501256868`18.706399572767868*^-10, 2.593660421579022468`18.413913114890587*^-10} BAND="manual_V" thetaCh={"0.01974370454", "0.03032097302", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5928357158 0.5600812695 0.5066746548 0.3765527942 0.2586553075 0.1803750793 0.1273327823 0.09007927087 0.06372399862 0.04507147528 0.03187478517 0.02254048616 0.01593910523 0.01127085266 0.007969768337 0.005635502359 0.003984911008 0.002817760529 0.001992458857 0.001408881377 0.0009962298862 0.000704440765 0.0004981150357 0.0003522203398 0.000249057569 0.0001761101095 0.0001245288292 0.00008805499263 0.00006226445874 0.00004402743418 0.0000311322735 "zetatable" (channel 1) 0.007629992933 -0.001184365403 -0.000898822701 -0.002095227628 -0.001507196135 -0.0007603411233 -0.0003861685716 -0.000200843272 -0.0001045382448 -0.00005424296796 -0.00002807094714 -0.00001449871764 -7.478227982e-6 -3.852620273e-6 -1.982846716e-6 -1.019716634e-6 -5.239849076e-7 -2.690429631e-7 -1.380486691e-7 -7.078561037e-8 -3.627291222e-8 -1.857767083e-8 -9.509337878e-9 -4.864781533e-9 -2.487478053e-9 -1.271265846e-9 -6.493793738e-10 -3.315856449e-10 -1.692359575e-10 -8.633994165e-11 -4.402950729e-11 Precision last xi:18.493210837168352 Precision last zeta: 18.643743825546697 Discretization (channel 2) "xitable" (channel 2) 0.5913958104 0.560270359 0.5067763589 0.3767601752 0.2587726565 0.1804205028 0.1273499847 0.09008582942 0.06372648647 0.04507241354 0.03187513738 0.02254061792 0.01593915437 0.01127087094 0.007969775118 0.005635504873 0.003984911938 0.002817760873 0.001992458984 0.001408881423 0.0009962299033 0.0007044407713 0.000498115038 0.0003522203407 0.0002490575693 0.0001761101096 0.0001245288292 0.00008805499265 0.00006226445875 0.00004402743419 0.0000311322735 "zetatable" (channel 2) -0.04189112609 0.005083217141 0.00520096562 0.01168372087 0.008449443164 0.004245219611 0.002142264683 0.001109624702 0.0005762139346 0.0002985824438 0.0001543959798 0.00007970898641 0.00004110065663 0.00002116983549 0.00001089389476 5.601684422e-6 2.878131047e-6 1.477647966e-6 7.581279227e-7 3.887038156e-7 1.991690795e-7 1.019995223e-7 5.220668842e-8 2.670605208e-8 1.36545501e-8 6.977945374e-9 3.564214956e-9 1.819853121e-9 9.287728171e-10 4.738117433e-10 2.416106008e-10 Precision last xi:18.493210837178616 Precision last zeta: 18.38311598530661 Discretization (channel 3) "xitable" (channel 3) -0.002605226142 0.0003405934827 0.0001834019468 0.0003745668066 0.0002124077122 0.00008234298974 0.00003121023715 0.00001190443 4.516786736e-6 1.703659835e-6 6.395734977e-7 2.392820317e-7 8.924421401e-8 3.318088168e-8 1.231422429e-8 4.564669975e-9 1.688956103e-9 6.23862484e-10 2.300584793e-10 8.467890706e-11 3.113593984e-11 1.144145432e-11 4.199456717e-12 1.539628525e-12 5.63829204e-13 2.062073459e-13 7.536260365e-14 2.753422981e-14 1.005111685e-14 3.665857799e-15 1.335971041e-15 "zetatable" (channel 3) -0.04503309176 0.005640634534 0.005497495558 0.01242901807 0.009002283655 0.004534558814 0.002292991836 0.001189129659 0.0006179134259 0.0003203105844 0.0001656664014 0.00008553765168 0.00004410921749 0.00002272047985 0.00001169220905 6.012319856e-6 3.089172268e-6 1.586023128e-6 8.137430172e-7 4.172240354e-7 2.137852719e-7 1.09486119e-7 5.603919186e-8 2.86668495e-8 1.465723401e-8 7.490423063e-9 3.826014802e-9 1.953542731e-9 9.970105105e-10 5.0862719e-10 2.593660422e-10 Precision last xi:18.125797044324756 Precision last zeta: 18.413913114890587 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.04503309176 0.005640634534 0.005497495558 0.01242901807 0.009002283655 0.004534558814 0.002292991836 0.001189129659 0.0006179134259 0.0003203105844 0.0001656664014 0.00008553765168 0.00004410921749 0.00002272047985 0.00001169220905 6.012319856e-6 3.089172268e-6 1.586023128e-6 8.137430172e-7 4.172240354e-7 2.137852719e-7 1.09486119e-7 5.603919186e-8 2.86668495e-8 1.465723401e-8 7.490423063e-9 3.826014802e-9 1.953542731e-9 9.970105105e-10 5.0862719e-10 2.593660422e-10 Precision last xi:MachinePrecision Precision last zeta: 18.413913114890587 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.01974370454", "0.03032097302", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.001974370453982399", "0.003032097302456381", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.02506913709108825", "0.03106680780580891", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> 0.021454515331425224 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.275957200481571*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000009 1-abs=-8.881784197001252*^-16 orthogonality check=4.53313485954553*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=1.942890293094024*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24825769956362703, -0.22513288381125326, -0.15899601539674105, -0.13592758428128632, -0.07842836208297675, -0.07639128973595727, -0.05935628750531069, -0.017130566577991727, 0.017130566577991727, 0.019167638925011176, 0.026391289735957273, 0.06861701066327631, 0.11240154981573644, 0.1316110274973042, 0.20251787171068994, 0.22178373402917717} Lowest energies (GS shifted):{0., 0.023124815752373767, 0.08926168416688599, 0.11233011528234071, 0.16982933748065027, 0.17186640982766976, 0.18890141205831634, 0.2311271329856353, 0.26538826614161876, 0.2674253384886382, 0.2746489892995843, 0.31687471022690333, 0.36065924937936344, 0.3798687270609312, 0.450775571274317, 0.4700414335928042} Scale factor SCALE(Ninit):1.4426950408889634 Lowest energies (shifted and scaled):{0., 0.016028900839726086, 0.06187148471230933, 0.0778613026999281, 0.11771672645107617, 0.11912871740500937, 0.13093648117201442, 0.16020512057989664, 0.18395312842975542, 0.18536511938368858, 0.19037217257664546, 0.2196408119845277, 0.24998994185017198, 0.2633049371451799, 0.31245381629409147, 0.325807894441207} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.006887`4.289575076481293} {ham, 0.204992`5.064311901807662} {maketable, 0.964262`6.435740045754149} {xi, 0.083629`5.373901897203178} {_, 0} data gammaPol=0.02506913709108825 "Success!"