NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.2131570881878404 faktor=1.1657299587521546 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.1405122932019099158`18.147714321651797 "V[1,2]="0.2362537996427681863`18.373378801945822 "V[2,1]="0 "V[2,2]="-0.1741291848776478912`18.240871567033913 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5851733730068472417`18.767284556313, 0.5059547353857175578`18.704111664959306, 0.4065457381465651943`18.609109412678528, 0.295224198395669768`18.4701519520636, 0.2103023909585861884`18.32284421027176, 0.1498891766673930148`18.175770274053537, 0.1065718016581911343`18.027642307840008, 0.07558547234629317546`18.878438331398982, 0.05353011627763890057`18.72859818675504, 0.03788125163729568617`18.578424320125073, 0.02679665730842133511`18.42808062227323, 0.01895184018595988049`18.277651385481256, 0.01340229808785359245`18.1271792730888, 0.009477323208223266057`18.97668569176276, 0.006701644790890899303`18.82618140508024, 0.004738836653048432782`18.67567173889515, 0.003350884261892951924`18.525159427748946, 0.002369440081877990933`18.37464573078652, 0.001675449866242914067`18.224131437160963, 0.001184722715552342888`18.073616715580762, 0.0008377259337360432306`18.923101960236625, 0.000592361643209372824`18.77258692918437, 0.000418863122939442268`18.62207212639393, 0.0002961808113447947344`18.471556918476153, 0.0002094316134435812726`18.3210422385072, 0.0001480903590179520049`18.17052678599189, 0.0001047158458025498949`18.020012404925293, 0.0000740451273219882661`18.86949648423737, 0.00005235796001347576536`18.718982717096637, 0.0000370225115819084873`18.568465877657417, 0.00002617901719506333371`18.417953338365518} "zeta="{0.007556494926678375065`18.878320395105558, -0.001893725250093546099`18.27731696990286, -0.001586192102282048223`18.20035578317632, -0.001551115958456712914`18.190644266050498, -0.000939244190056466653`18.972778517300267, -0.0005104001018982115946`18.707910752417312, -0.0002736056948189680474`18.437125132531683, -0.0001446956465236607216`18.160455464642233, -0.00007569449317256264024`18.87906428542132, -0.00003933439785222171437`18.594772506190445, -0.0000203607425804740958`18.30879361318934, -0.00001051449812013882853`18.021788547696982, -5.42067009173094673`18.734052976419*^-6, -2.791127878865790874`18.445779734666164*^-6, -1.435757016198417059`18.157080947250826*^-6, -7.378759859311284771`18.867983376522883*^-7, -3.789235085093516964`18.578551549849234*^-7, -1.944624249836181356`18.288835697184844*^-7, -9.972803988766486685`18.99881728325029*^-8, -5.111159109832613224`18.70851940070612*^-8, -2.617995705070604552`18.417968929737402*^-8, -1.340146202708572845`18.12715218013045*^-8, -6.856469192773420284`18.83610052899395*^-9, -3.506325887183926389`18.54485227810928*^-9, -1.792162619467833591`18.25337741466384*^-9, -9.155731521875585851`18.961693049153503*^-10, -4.675343924565921585`18.669813563667855*^-10, -2.38635824438036113`18.377735641295235*^-10, -1.217492976787936851`18.085466464629143*^-10, -6.209613889732617883`18.793064596831698*^-11, -3.165675446252503568`18.50046638774467*^-11} "nrch="2 "xi="{0.5837417383306267027`18.766220747068285, 0.5061870622407919074`18.704311040724967, 0.4067091720168282132`18.609283966629768, 0.2953588372157928688`18.470349969595823, 0.2103671625485462882`18.322977949184367, 0.1499158091274105931`18.17584743308026, 0.1065823341429647936`18.02768522701682, 0.07558954467446685199`18.878461729308103, 0.05353166696286638243`18.72861076741673, 0.03788183659674735498`18.57843102641617, 0.02679687661825096504`18.428084176621745, 0.01895192203954520344`18.27765326120854, 0.01340232855654488638`18.127180260409734, 0.00947733452897743002`18.976686210531405, 0.006701648988406390742`18.826181677096635, 0.004738838206362127464`18.675671881249805, 0.003350884835620334366`18.525159502107414, 0.00236944029339691397`18.374645769555805, 0.001675449944135326639`18.224131457351508, 0.001184722744212185616`18.073616726086858, 0.000837725944268530873`18.923101965696883, 0.0005923616470753093662`18.77258693201871, 0.0004188631243566485183`18.622072127863348, 0.000296180811863684299`18.47155691923701, 0.0002094316136334229588`18.321042238900873, 0.0001480903590873699734`18.170526786195463, 0.0001047158458279125144`18.020012405030478, 0.00007404512733124717647`18.869496484291673, 0.00005235796001685254014`18.718982717124646, 0.0000370225115831388467`18.56846587767185, 0.00002617901719551140059`18.41795333837295} "zeta="{-0.04148789208660459693`18.617921369791333, 0.009040074220259578311`18.956171996107763, 0.008993271438307177609`18.953917701650973, 0.008682052867182724065`18.938622426038023, 0.005253784540595685462`18.720472258257995, 0.00283903682356007438`18.453171025553413, 0.001514482025211070365`18.180264123229808, 0.0007985216856529478912`18.902286714878418, 0.0004169951439372031679`18.620130997483216, 0.0002164662516216353766`18.335390196869646, 0.0001119800083981148809`18.049140495729556, 0.00005780469601966946173`18.761963121683248, 0.00002979268673556640846`18.474109670110515, 0.00001533729853885318334`18.185748871152242, 7.888232765264610848`18.896979717244836*^-6, 4.053424825978860677`18.60782212308777*^-6, 2.081310025266162877`18.318336776143347*^-6, 1.068001304867706533`18.02857178330724*^-6, 5.476557313214117283`18.738507637003565*^-7, 2.806510971199064844`18.44816674430089*^-7, 1.437392984509216257`18.157575520862757*^-7, 7.357327873054136204`18.866720110437676*^-8, 3.763843965161473725`18.57563161090985*^-8, 1.924633702147529017`18.284348086429805*^-8, 9.836475847705109661`18.992839529931853*^-9, 5.024848129053897509`18.701122940179975*^-9, 2.565739457602295757`18.409212553102613*^-9, 1.309498607425790864`18.11710504091504*^-9, 6.680476783933602602`18.824807459068687*^-10, 3.407047747815649104`18.532378219998037*^-10, 1.736815623564118326`18.239753717169744*^-10} "nrch="3 "xi="{-0.00259016446449866853`18.41332734082124, 0.0004185504590300878755`18.621747822561854, 0.0002949750738342375527`18.46978531850828, 0.0002434489028678109279`18.386407821685243, 0.000117308927918177201`18.069331065807354, 0.00004828468754756782313`18.683809425410836, 0.00001910673424347538642`18.28118646302361, 7.38993638729636765`18.868640699996305*^-6, 2.814484218151730747`18.449398817754144*^-6, 1.061799078806108957`18.026042344220812*^-6, 3.981041580514733385`18.59999671365388*^-7, 1.485894533113003941`18.171987984853526*^-7, 5.531083660366699981`18.742810227436955*^-8, 2.05510975678522752`18.312835021099335*^-8, 7.619977125258508312`18.881953667614024*^-9, 2.81982022521474721`18.450221421196677*^-9, 1.041521628886454588`18.017668293206956*^-9, 3.839831663497200533`18.584312185509003*^-10, 1.414028749356769716`18.1504582394185*^-10, 5.20279791318845298399999999999999999999999999999`18.716236957379493*^-11, 1.912027555250446707`18.281494146834948*^-11, 7.018073707433620859`18.846217925088222*^-12, 2.572742243981840877`18.41039627761192*^-12, 9.419723137607197808`18.97403813829432*^-13, 3.446314270805796484`18.537354878409015*^-13, 1.260187468069398183`18.100435156460374*^-13, 4.604232058369520176`18.663157204429858*^-14, 1.68082678095453077500000000000000000000000001`18.225522959155224*^-14, 6.130080717422020979`18.787466193099196*^-15, 2.233547913785732596`18.34899527333777*^-15, 8.133981920284191419999999999999999999999999`18.910303202746523*^-16} "zeta="{-0.0445995652821811403`18.649330625607433, 0.009839349576402684969`18.99296639063506, 0.009539056143775656929`18.979505404910707, 0.009242619280561531134`18.965795064065855, 0.005604455772849916383`18.748533446311264, 0.003035110990182656072`18.482174577303372, 0.001621520235795326616`18.209922372829784, 0.0008557156712784031458`18.93232948557982, 0.0004470865333077033593`18.65039158868209, 0.0002321527474073007454`18.365773827682442, 0.0001201142633140898745`18.079594582014046, 0.0000620096084053058398`18.792458988757822, 0.00003196183743363720009`18.504631738237435, 0.00001645465040702164547`18.21628865977447, 8.463160339018460177`18.927532568890072*^-6, 4.348959731928211662`18.638385386446128*^-6, 2.233103713257010629`18.348908893715976*^-6, 1.145913376806097896`18.05915178918723*^-6, 5.87617679845496709`18.769094854075043*^-7, 3.011346108934463733`18.478760673998952*^-7, 1.542324559784400608`18.188175774293057*^-7, 7.89453117601148199`18.897326344133194*^-8, 4.038718044248889403`18.60624353474931*^-8, 2.065215863249114442`18.31496545227248*^-8, 1.055509366433069082`18.02346209152539*^-8, 5.39200728015631455`18.731750469901446*^-9, 2.753244919962378889`18.439844846575667*^-9, 1.405212148695335596`18.147741895808675*^-9, 7.168836785113392481`18.8554486927962*^-10, 3.656147206652421996`18.563023673317215*^-10, 1.86381680894236727`18.2704032241257*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.0445995652821811403`18.649330625607433, 0.009839349576402684969`18.99296639063506, 0.009539056143775656929`18.979505404910707, 0.009242619280561531134`18.965795064065855, 0.005604455772849916383`18.748533446311264, 0.003035110990182656072`18.482174577303372, 0.001621520235795326616`18.209922372829784, 0.0008557156712784031458`18.93232948557982, 0.0004470865333077033593`18.65039158868209, 0.0002321527474073007454`18.365773827682442, 0.0001201142633140898745`18.079594582014046, 0.0000620096084053058398`18.792458988757822, 0.00003196183743363720009`18.504631738237435, 0.00001645465040702164547`18.21628865977447, 8.463160339018460177`18.927532568890072*^-6, 4.348959731928211662`18.638385386446128*^-6, 2.233103713257010629`18.348908893715976*^-6, 1.145913376806097896`18.05915178918723*^-6, 5.87617679845496709`18.769094854075043*^-7, 3.011346108934463733`18.478760673998952*^-7, 1.542324559784400608`18.188175774293057*^-7, 7.89453117601148199`18.897326344133194*^-8, 4.038718044248889403`18.60624353474931*^-8, 2.065215863249114442`18.31496545227248*^-8, 1.055509366433069082`18.02346209152539*^-8, 5.39200728015631455`18.731750469901446*^-9, 2.753244919962378889`18.439844846575667*^-9, 1.405212148695335596`18.147741895808675*^-9, 7.168836785113392481`18.8554486927962*^-10, 3.656147206652421996`18.563023673317215*^-10, 1.86381680894236727`18.2704032241257*^-10} BAND="manual_V" thetaCh={"0.01974370454", "0.03032097303", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.585173373 0.5059547354 0.4065457381 0.2952241984 0.210302391 0.1498891767 0.1065718017 0.07558547235 0.05353011628 0.03788125164 0.02679665731 0.01895184019 0.01340229809 0.009477323208 0.006701644791 0.004738836653 0.003350884262 0.002369440082 0.001675449866 0.001184722716 0.0008377259337 0.0005923616432 0.0004188631229 0.0002961808113 0.0002094316134 0.000148090359 0.0001047158458 0.00007404512732 0.00005235796001 0.00003702251158 0.0000261790172 "zetatable" (channel 1) 0.007556494927 -0.00189372525 -0.001586192102 -0.001551115958 -0.0009392441901 -0.0005104001019 -0.0002736056948 -0.0001446956465 -0.00007569449317 -0.00003933439785 -0.00002036074258 -0.00001051449812 -5.420670092e-6 -2.791127879e-6 -1.435757016e-6 -7.378759859e-7 -3.789235085e-7 -1.94462425e-7 -9.972803989e-8 -5.11115911e-8 -2.617995705e-8 -1.340146203e-8 -6.856469193e-9 -3.506325887e-9 -1.792162619e-9 -9.155731522e-10 -4.675343925e-10 -2.386358244e-10 -1.217492977e-10 -6.20961389e-11 -3.165675446e-11 Precision last xi:18.417953338365518 Precision last zeta: 18.50046638774467 Discretization (channel 2) "xitable" (channel 2) 0.5837417383 0.5061870622 0.406709172 0.2953588372 0.2103671625 0.1499158091 0.1065823341 0.07558954467 0.05353166696 0.0378818366 0.02679687662 0.01895192204 0.01340232856 0.009477334529 0.006701648988 0.004738838206 0.003350884836 0.002369440293 0.001675449944 0.001184722744 0.0008377259443 0.0005923616471 0.0004188631244 0.0002961808119 0.0002094316136 0.0001480903591 0.0001047158458 0.00007404512733 0.00005235796002 0.00003702251158 0.0000261790172 "zetatable" (channel 2) -0.04148789209 0.00904007422 0.008993271438 0.008682052867 0.005253784541 0.002839036824 0.001514482025 0.0007985216857 0.0004169951439 0.0002164662516 0.0001119800084 0.00005780469602 0.00002979268674 0.00001533729854 7.888232765e-6 4.053424826e-6 2.081310025e-6 1.068001305e-6 5.476557313e-7 2.806510971e-7 1.437392985e-7 7.357327873e-8 3.763843965e-8 1.924633702e-8 9.836475848e-9 5.024848129e-9 2.565739458e-9 1.309498607e-9 6.680476784e-10 3.407047748e-10 1.736815624e-10 Precision last xi:18.41795333837295 Precision last zeta: 18.239753717169744 Discretization (channel 3) "xitable" (channel 3) -0.002590164464 0.000418550459 0.0002949750738 0.0002434489029 0.0001173089279 0.00004828468755 0.00001910673424 7.389936387e-6 2.814484218e-6 1.061799079e-6 3.981041581e-7 1.485894533e-7 5.53108366e-8 2.055109757e-8 7.619977125e-9 2.819820225e-9 1.041521629e-9 3.839831663e-10 1.414028749e-10 5.202797913e-11 1.912027555e-11 7.018073707e-12 2.572742244e-12 9.419723138e-13 3.446314271e-13 1.260187468e-13 4.604232058e-14 1.680826781e-14 6.130080717e-15 2.233547914e-15 8.13398192e-16 "zetatable" (channel 3) -0.04459956528 0.009839349576 0.009539056144 0.009242619281 0.005604455773 0.00303511099 0.001621520236 0.0008557156713 0.0004470865333 0.0002321527474 0.0001201142633 0.00006200960841 0.00003196183743 0.00001645465041 8.463160339e-6 4.348959732e-6 2.233103713e-6 1.145913377e-6 5.876176798e-7 3.011346109e-7 1.54232456e-7 7.894531176e-8 4.038718044e-8 2.065215863e-8 1.055509366e-8 5.39200728e-9 2.75324492e-9 1.405212149e-9 7.168836785e-10 3.656147207e-10 1.863816809e-10 Precision last xi:18.910303202746523 Precision last zeta: 18.2704032241257 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.04459956528 0.009839349576 0.009539056144 0.009242619281 0.005604455773 0.00303511099 0.001621520236 0.0008557156713 0.0004470865333 0.0002321527474 0.0001201142633 0.00006200960841 0.00003196183743 0.00001645465041 8.463160339e-6 4.348959732e-6 2.233103713e-6 1.145913377e-6 5.876176798e-7 3.011346109e-7 1.54232456e-7 7.894531176e-8 4.038718044e-8 2.065215863e-8 1.055509366e-8 5.39200728e-9 2.75324492e-9 1.405212149e-9 7.168836785e-10 3.656147207e-10 1.863816809e-10 Precision last xi:MachinePrecision Precision last zeta: 18.2704032241257 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.01974370454", "0.03032097303", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0019743704540859503", "0.003032097302615408", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.025069137091745658", "0.031066807806623603", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> 0.022486436290322185 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=3.4416913763379853*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=5.679818370988733*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=3.1086244689504383*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24802740509691334, -0.22479887657437536, -0.1592988539684977, -0.13612669213130027, -0.07811725219056397, -0.07589655388861516, -0.05928060235868216, -0.01696569857996311, 0.01696569857996311, 0.019186396881911896, 0.025896553888615167, 0.06821145766733422, 0.1125778622885502, 0.13193662410579743, 0.20216110643707605, 0.22157623493966322} Lowest energies (GS shifted):{0., 0.023228528522537983, 0.08872855112841566, 0.11190071296561308, 0.16991015290634937, 0.17213085120829819, 0.1887468027382312, 0.23106170651695024, 0.26499310367687645, 0.2672138019788252, 0.2739239589855285, 0.31623886276424756, 0.36060526738546356, 0.3799640292027108, 0.4501885115339894, 0.46960364003657656} Scale factor SCALE(Ninit):1.2131570881878404 Lowest energies (shifted and scaled):{0., 0.019147172900119403, 0.07313855063976453, 0.0922392607314897, 0.14005618444694043, 0.14188669619481803, 0.1555831512472739, 0.19046313850591257, 0.21843263849095687, 0.22026315023883442, 0.2257943028587533, 0.26067429011739196, 0.2972453204095106, 0.31320266180061146, 0.3710883907099457, 0.38709219490944025} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007697`4.3378664800554505} {ham, 0.209396`5.073543370444899} {maketable, 1.08185`6.4857120429095545} {xi, 0.092292`5.416709050898569} {_, 0} data gammaPol=0.025069137091745658 "Success!"