NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.0201394465967895 faktor=1.3862943611198906 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.1405122932050083817`18.147714321661372 "V[1,2]="0.2362537996479780189`18.373378801955397 "V[2,1]="0 "V[2,2]="-0.1741291848814876808`18.24087156704349 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.543442220637437301`18.735153376219458, 0.4160575169793470085`18.619153372886505, 0.3222048833495282372`18.508132118316848, 0.2403979270750864483`18.380930718473245, 0.1749648013195321539`18.242950687942063, 0.1255833526804891465`18.098932073173675, 0.0894787889406596787`18.951720097463618, 0.0635139489818555697`18.80286911585216, 0.04499755112420395636`18.65318887906013, 0.03184870499011890205`18.50309177805035, 0.02253127537190161706`18.352785775447874, 0.01593585025316538242`18.202375240097602, 0.01126970242051906178`18.051912448536548, 0.007969361432512436783`18.90142352372401, 0.005635358738704719823`18.750921567814398, 0.003984860002214071599`18.600413068182842, 0.002817742756667398259`18.449901342052488, 0.00199245232981986372`18.299387939531716, 0.001408879311900250019`18.148873791959144, 0.0009962289131700849485`18.99835914194164, 0.0007044406736584430187`18.847844423722623, 0.000498114762466341063`18.697329412968415, 0.0003522204915808052898`18.546814618870297, 0.0002490573792411975387`18.396299413830924, 0.0001761102917444736784`18.245784736530766, 0.0001245286517972909156`18.09526928625793, 0.00008805517928853098504`18.944754905678383, 0.00006226428209179016553`18.794238985040458, 0.00004402762086865250079`18.64372521801614, 0.00003113209720736502734`18.49320837782698, 0.00002201384169524700941`18.342695839075727} "zeta="{0.007006097001836601376`18.845476145980637, -0.00266945957487045105`18.42642334847783, -0.001430032464205415127`18.15534589681138, -0.001017238848990017347`18.007422937799202, -0.0006323480925552908216`18.800956212869867, -0.0003608389585636821956`18.557313420709782, -0.0001963885717284004394`18.293116211660195, -0.000104205496073361462`18.01789062540675, -0.00005454581147894239186`18.73676140714393, -0.00002834396711258811884`18.452460635414955, -0.00001466761224017901905`18.166359420229355, -7.570658477906963319`18.879133655046235*^-6, -3.901106578695610295`18.59118781545076*^-6, -2.00777790484230689`18.302715670606435*^-6, -1.032279091285847058`18.013797130836533*^-6, -5.30303490037342491`18.7245244853101*^-7, -2.722261764450175002`18.434929883317867*^-7, -1.396402283463637414`18.14501055032178*^-7, -7.158396946421159686`18.854815777158276*^-8, -3.667469633233862934`18.564366526557976*^-8, -1.877804688084908917`18.273650418974785*^-8, -9.60956025285519021`18.982703514190074*^-9, -4.915105668632780403`18.69153285905744*^-9, -2.512616451329471212`18.40012619898489*^-9, -1.283846977024395441`18.108513262833853*^-9, -6.557176263294458735`18.816716858082753*^-10, -3.347432591838625269`18.52471184026589*^-10, -1.708185963135499732`18.232535148769422*^-10, -8.713182472763791099`18.94017680918897*^-11, -4.442703493314740146`18.64764732933039*^-11, -2.264315214422990887`18.35493688468738*^-11} "nrch="2 "xi="{0.5421231457255679675`18.73409794970138, 0.4163575130269903113`18.6194664057584, 0.3223509832093147676`18.508328999199612, 0.2404794438507891208`18.38107795886487, 0.1750032203972168854`18.243046040616996, 0.1255996106161016701`18.09898829300356, 0.08948527754317532612`18.95175158941979, 0.06351645759524440771`18.80288626886271, 0.04499850508954892497`18.653198086172146, 0.03184906455185002733`18.503096681068993, 0.022531410080732929`18.352788371977642, 0.01593590051038776267`18.20237660973898, 0.01126972111024161262`18.051913168771772, 0.007969368363023955626`18.901423901405664, 0.005635361304207734713`18.750921765527377, 0.003984860950803500827`18.600413171565922, 0.002817743106848765236`18.449901396025414, 0.001992452458890291676`18.299387967665176, 0.001408879359400756802`18.148873806601426, 0.0009962289306232902791`18.998359149550165, 0.0007044406800651413243`18.847844427672417, 0.0004981147648166454759`18.697329415017588, 0.0003522204924421406527`18.546814619932338, 0.0002490573795565258685`18.396299414380778, 0.0001761102918597899636`18.24578473681514, 0.0001245286518394145281`18.095269286404836, 0.00008805517930390825156`18.944754905754223, 0.00006226428209740194177`18.7942389850796, 0.00004402762087069879687`18.643725218036327, 0.00003113209720811051121`18.493208377837384, 0.00002201384169551840215`18.34269583908108} "zeta="{-0.03846269194334378527`18.585039676554235, 0.01349920502423235941`18.130308193402044, 0.008132248839874213486`18.91021065920983, 0.005704982511922075845`18.756254317468102, 0.00352462213193064245`18.54711256393342, 0.002000868029974039574`18.30121844508593, 0.00108506027822036894`18.03545386516273, 0.0005744505076982438013`18.759252617603156, 0.0003002917635704859759`18.477543420494207, 0.0001559190473687877346`18.192899172673556, 0.000080646822899304091`18.906587262927967, 0.00004161249654011452039`18.61922377205516, 0.00002143780890290616629`18.3311803952929, 0.00001103146620638883702`18.042633238915755, 5.670911173037187257`18.75365284471821*^-6, 2.91290483867019795`18.464326296946417*^-6, 1.495143939615978587`18.17468300481549*^-6, 7.668647751109561638`18.88471878950222*^-7, 3.930809249681702393`18.594481969329973*^-7, 2.013691734741147547`18.303992987494816*^-7, 1.030953875038404081`18.01323923534714*^-7, 5.275413064614989765`18.72225647054027*^-8, 2.698059887224667238`18.431051585218228*^-8, 1.379152473051128751`18.139612282524084*^-8, 7.046413045942679106`18.847968097022353*^-9, 3.598667474844662061`18.556141718697386*^-9, 1.836995107918624255`18.264107999742514*^-9, 9.373542319322065385`18.971903744464175*^-10, 4.781001883066689023`18.679518914748982*^-10, 2.437608900097618978`18.38696402689571*^-10, 1.242307561459374759`18.094229128617428*^-10} "nrch="3 "xi="{-0.002386615246717221656`18.37778241075543, 0.0005408056770455154597`18.73304124191398, 0.0002640345614922463206`18.42166077869918, 0.0001475682249509256379`18.168992853326603, 0.00006963250245055989103`18.842812003116705, 0.00002948868210843325665`18.469655363741197, 0.00001177414344654383741`18.070929322597514, 4.553195660709217101`18.658316313286566*^-6, 1.731696501513969416`18.23847177955925*^-6, 6.527440895339432758`18.81474294806386*^-7, 2.445578804515577111`18.388381661765703*^-7, 9.124153749442188488`18.960192594882972*^-8, 3.393137477722883105`18.53060145605151*^-8, 1.25824800279984447`18.099766249719927*^-8, 4.657734459282556288`18.668174725470546*^-9, 1.722190238052643191`18.23608112317638*^-9, 6.357644126974740116`18.8032962143594*^-10, 2.343311948871640391`18.36983010705859*^-10, 8.623859927622032171`18.93570169390541*^-11, 3.16868226945076116299999999999999999999999999999`18.50087869373677*^-11, 1.16315555540006275500000000000000000000000000001`18.065637799280726*^-11, 4.267049282022890693`18.63012765874565*^-12, 1.5637806036979278619999999999999999999999999999`18.194175822069713*^-12, 5.724882385717665798`18.757766568783367*^-13, 2.093602224571906626`18.320894171094757*^-13, 7.647671539253699483`18.8835292271037*^-14, 2.79179130486386165200000000000000000000000001`18.44588295029297*^-14, 1.01883601452090368299999999999999999999999999`18.008104288304978*^-14, 3.715121178766631055`18.569972984021593*^-15, 1.353463730776868668`18.131446622327054*^-15, 4.927074099789556032000000000000000000000001`18.69258909381291*^-16} "zeta="{-0.04134801848605162283`18.616454701767804, 0.01455140664333157488`18.162904977370662, 0.008632223099746105105`18.936122656157774, 0.006080143824966054329`18.78391385257049, 0.003765370544691695048`18.575807720934176, 0.002141240279080853463`18.33066540434432, 0.0011624702348399464`18.065381841553165, 0.0006158365316851001662`18.789465447864792, 0.0003220468202420076562`18.507919015467813, 0.0001672503867820231843`18.22336713078727, 0.00008651844376159908241`18.937108699026087, 0.00004464548646844560811`18.649777559508326, 0.0000230014429698142401`18.3617550818511, 0.00001183648001221720975`18.073222569062953, 6.084898275917387247`18.78425332232335*^-6, 3.125618186907621945`18.494935925235747*^-6, 1.60435538598314806`18.205300576588886*^-6, 8.228932627076140832`18.91534350662984*^-7, 4.218065162371763234`18.625113284611597*^-7, 2.160879188022309025`18.334630486715756*^-7, 1.106324594580224833`18.043882567251543*^-7, 5.661158897705684437`18.75290534485603*^-8, 2.89538115236196562`18.461705743010477*^-8, 1.48003326024849336`18.170271475246363*^-8, 7.56192051447575795`18.87863210805614*^-9, 3.86198293629238852`18.586810350569625*^-9, 1.971428615108189659`18.294781056009352*^-9, 1.005960781849544074`18.00258104974741*^-9, 5.130979784788269651`18.710200303610325*^-10, 2.616069831936644479`18.417649332626226*^-10, 1.333270298291753108`18.124918204294907*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.04134801848605162283`18.616454701767804, 0.01455140664333157488`18.162904977370662, 0.008632223099746105105`18.936122656157774, 0.006080143824966054329`18.78391385257049, 0.003765370544691695048`18.575807720934176, 0.002141240279080853463`18.33066540434432, 0.0011624702348399464`18.065381841553165, 0.0006158365316851001662`18.789465447864792, 0.0003220468202420076562`18.507919015467813, 0.0001672503867820231843`18.22336713078727, 0.00008651844376159908241`18.937108699026087, 0.00004464548646844560811`18.649777559508326, 0.0000230014429698142401`18.3617550818511, 0.00001183648001221720975`18.073222569062953, 6.084898275917387247`18.78425332232335*^-6, 3.125618186907621945`18.494935925235747*^-6, 1.60435538598314806`18.205300576588886*^-6, 8.228932627076140832`18.91534350662984*^-7, 4.218065162371763234`18.625113284611597*^-7, 2.160879188022309025`18.334630486715756*^-7, 1.106324594580224833`18.043882567251543*^-7, 5.661158897705684437`18.75290534485603*^-8, 2.89538115236196562`18.461705743010477*^-8, 1.48003326024849336`18.170271475246363*^-8, 7.56192051447575795`18.87863210805614*^-9, 3.86198293629238852`18.586810350569625*^-9, 1.971428615108189659`18.294781056009352*^-9, 1.005960781849544074`18.00258104974741*^-9, 5.130979784788269651`18.710200303610325*^-10, 2.616069831936644479`18.417649332626226*^-10, 1.333270298291753108`18.124918204294907*^-10} BAND="manual_V" thetaCh={"0.01974370454", "0.03032097303", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5434422206 0.416057517 0.3222048833 0.2403979271 0.1749648013 0.1255833527 0.08947878894 0.06351394898 0.04499755112 0.03184870499 0.02253127537 0.01593585025 0.01126970242 0.007969361433 0.005635358739 0.003984860002 0.002817742757 0.00199245233 0.001408879312 0.0009962289132 0.0007044406737 0.0004981147625 0.0003522204916 0.0002490573792 0.0001761102917 0.0001245286518 0.00008805517929 0.00006226428209 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 1) 0.007006097002 -0.002669459575 -0.001430032464 -0.001017238849 -0.0006323480926 -0.0003608389586 -0.0001963885717 -0.0001042054961 -0.00005454581148 -0.00002834396711 -0.00001466761224 -7.570658478e-6 -3.901106579e-6 -2.007777905e-6 -1.032279091e-6 -5.3030349e-7 -2.722261764e-7 -1.396402283e-7 -7.158396946e-8 -3.667469633e-8 -1.877804688e-8 -9.609560253e-9 -4.915105669e-9 -2.512616451e-9 -1.283846977e-9 -6.557176263e-10 -3.347432592e-10 -1.708185963e-10 -8.713182473e-11 -4.442703493e-11 -2.264315214e-11 Precision last xi:18.342695839075727 Precision last zeta: 18.35493688468738 Discretization (channel 2) "xitable" (channel 2) 0.5421231457 0.416357513 0.3223509832 0.2404794439 0.1750032204 0.1255996106 0.08948527754 0.0635164576 0.04499850509 0.03184906455 0.02253141008 0.01593590051 0.01126972111 0.007969368363 0.005635361304 0.003984860951 0.002817743107 0.001992452459 0.001408879359 0.0009962289306 0.0007044406801 0.0004981147648 0.0003522204924 0.0002490573796 0.0001761102919 0.0001245286518 0.0000880551793 0.0000622642821 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 2) -0.03846269194 0.01349920502 0.00813224884 0.005704982512 0.003524622132 0.00200086803 0.001085060278 0.0005744505077 0.0003002917636 0.0001559190474 0.0000806468229 0.00004161249654 0.0000214378089 0.00001103146621 5.670911173e-6 2.912904839e-6 1.49514394e-6 7.668647751e-7 3.93080925e-7 2.013691735e-7 1.030953875e-7 5.275413065e-8 2.698059887e-8 1.379152473e-8 7.046413046e-9 3.598667475e-9 1.836995108e-9 9.373542319e-10 4.781001883e-10 2.4376089e-10 1.242307561e-10 Precision last xi:18.34269583908108 Precision last zeta: 18.094229128617428 Discretization (channel 3) "xitable" (channel 3) -0.002386615247 0.000540805677 0.0002640345615 0.000147568225 0.00006963250245 0.00002948868211 0.00001177414345 4.553195661e-6 1.731696502e-6 6.527440895e-7 2.445578805e-7 9.124153749e-8 3.393137478e-8 1.258248003e-8 4.657734459e-9 1.722190238e-9 6.357644127e-10 2.343311949e-10 8.623859928e-11 3.168682269e-11 1.163155555e-11 4.267049282e-12 1.563780604e-12 5.724882386e-13 2.093602225e-13 7.647671539e-14 2.791791305e-14 1.018836015e-14 3.715121179e-15 1.353463731e-15 4.9270741e-16 "zetatable" (channel 3) -0.04134801849 0.01455140664 0.0086322231 0.006080143825 0.003765370545 0.002141240279 0.001162470235 0.0006158365317 0.0003220468202 0.0001672503868 0.00008651844376 0.00004464548647 0.00002300144297 0.00001183648001 6.084898276e-6 3.125618187e-6 1.604355386e-6 8.228932627e-7 4.218065162e-7 2.160879188e-7 1.106324595e-7 5.661158898e-8 2.895381152e-8 1.48003326e-8 7.561920514e-9 3.861982936e-9 1.971428615e-9 1.005960782e-9 5.130979785e-10 2.616069832e-10 1.333270298e-10 Precision last xi:18.69258909381291 Precision last zeta: 18.124918204294907 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.04134801849 0.01455140664 0.0086322231 0.006080143825 0.003765370545 0.002141240279 0.001162470235 0.0006158365317 0.0003220468202 0.0001672503868 0.00008651844376 0.00004464548647 0.00002300144297 0.00001183648001 6.084898276e-6 3.125618187e-6 1.604355386e-6 8.228932627e-7 4.218065162e-7 2.160879188e-7 1.106324595e-7 5.661158898e-8 2.895381152e-8 1.48003326e-8 7.561920514e-9 3.861982936e-9 1.971428615e-9 1.005960782e-9 5.130979785e-10 2.616069832e-10 1.333270298e-10 Precision last xi:MachinePrecision Precision last zeta: 18.124918204294907 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.01974370454", "0.03032097303", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0019743704541730247", "0.0030320973027491323", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.025069137092298462", "0.031066807807308673", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> 0.03022693099683292 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.609024107869118*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=5.660278733739988*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=1.609823385706477*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24634587335467248, -0.2222981866638349, -0.16157538045862438, -0.13758393202805752, -0.07584266457633541, -0.07218592295121722, -0.05873839146666861, -0.01572829747075359, 0.01572829747075359, 0.01938503909587178, 0.022185922951217206, 0.06519601694713219, 0.11386649918148257, 0.1343839662418641, 0.19948960088059522, 0.22006330620124764} Lowest energies (GS shifted):{0., 0.024047686690837566, 0.0847704928960481, 0.10876194132661496, 0.17050320877833708, 0.17415995040345528, 0.18760748188800386, 0.2306175758839189, 0.26207417082542606, 0.26573091245054425, 0.2685317963058897, 0.3115418903018047, 0.36021237253615507, 0.3807298395965366, 0.4458354742352677, 0.4664091795559201} Scale factor SCALE(Ninit):1.0201394465967895 Lowest energies (shifted and scaled):{0., 0.023572940710273726, 0.08309696598719378, 0.10661477868486265, 0.16713715889248282, 0.17072170964906533, 0.18390376189634375, 0.22606475678718715, 0.25690034014439106, 0.2604848909009736, 0.2632304801090855, 0.30539147499992886, 0.35310111155669205, 0.37321352572597877, 0.43703385426628283, 0.45720139644817454} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007167`4.306882397965514} {ham, 0.200683`5.055085573810401} {maketable, 1.009297`6.455563975869016} {xi, 0.08378`5.374685349521174} {_, 0} data gammaPol=0.025069137092298462 "Success!"