NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.715663207404297 faktor=0.8242955588659627 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.2300875218264799293`18.361893066522406 "V[1,2]="0.204039877846123735`18.309715054857335 "V[2,1]="0 "V[2,2]="-0.106339061255917619`18.02669282211344 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5720230216620053598`18.7574135077783, 0.5408310609816859849`18.733061626028206, 0.5907244845757965157`18.771384972035683, 0.5166567727767836793`18.713202126864328, 0.3410929708075209343`18.532872769624458, 0.2215750529326716844`18.345520861726172, 0.15294205447930731`18.184526919794546, 0.1075636045009282088`18.031665347183043, 0.07592694060993056271`18.880395900826244, 0.05364950317085397102`18.729565704472414, 0.0379232340410477417`18.578905366279205, 0.02681145826308867913`18.42832043570572, 0.01895706523874434238`18.277771104664964, 0.01340414343390504415`18.127239066449132, 0.009477975535605974097`18.97671558337108, 0.006701875002810202958`18.82619632351477, 0.004738918276107840534`18.675679219241406, 0.003350912810810464937`18.52516312784228, 0.002369450471662776052`18.37464763512516, 0.001675453246559330603`18.22413231337416, 0.001184724195043754865`18.073617257930923, 0.0008377261567170213134`18.92310207583457, 0.0005923620106206672464`18.772587198554696, 0.0004188629582527044967`18.622071955639928, 0.0002961810415649928372`18.47155725605144, 0.0002094313974347865998`18.321041790573506, 0.0001480905704094014075`18.170527405924712, 0.0001047156243545781864`18.0200114864995, 0.00007404533758802447018`18.869497717502174, 0.00005235773788845188569`18.71898087462843, 0.00003702272111850230598`18.568468335630282} "zeta="{0.02740079321697634976`18.43776313525723, -0.003856361778699840277`18.5861777698166, 0.00365517029075189577`18.5629076151136, -0.005164182813946888856`18.71300160804888, -0.01065440881366632245`18.027529356810845, -0.005243752808225313894`18.71964221075374, -0.00220116533325626822`18.342652664372597, -0.001072251363427515706`18.03029660714116, -0.0005487144222997464467`18.739346375255096, -0.000282955105751929014`18.45171753492052, -0.0001460484354533225651`18.164496908946486, -0.00007535474066238684744`18.877110579527248, -0.00003885133401680334291`18.589405935522773, -0.00002001629569481451615`18.30138370810063, -0.0000103040998625412607`18.01301005901617, -5.299921708391500576`18.724269454154623*^-6, -2.724004304337451609`18.435207789492043*^-6, -1.39902364695273237`18.145825055202543*^-6, -7.180030387905086977`18.85612628230241*^-7, -3.682671736149721417`18.566163008691337*^-7, -1.887676956935167144`18.2759276743771*^-7, -9.669690086484486243`18.98541255517023*^-8, -4.950592865590598155`18.69465721162782*^-8, -2.533176337034888589`18.40366542253262*^-8, -1.295481359121460505`18.112431168237375*^-8, -6.622208757262075066`18.821002867249327*^-9, -3.383495074313901898`18.529365548574816*^-9, -1.72790348164411948`18.237519479716912*^-9, -8.820251764824015589`18.94548098178866*^-10, -4.500662609320914797`18.653276457416993*^-10, -2.295417120036660864`18.360861616439635*^-10} "nrch="2 "xi="{0.5694852033414312675`18.755482444498263, 0.5412166409105109155`18.733371141481577, 0.5904593446510721932`18.771190000168772, 0.5169562364427204848`18.713453778923903, 0.3415897144252832973`18.533504785214877, 0.2217527185775809428`18.34586895276985, 0.1529982698084244586`18.184686519596013, 0.1075838391306892378`18.031747038026552, 0.07593450557407757651`18.880439169506612, 0.05365234254641504386`18.72958868870219, 0.03792429801576994303`18.578917550679627, 0.02681185581158946132`18.428326875185384, 0.01895721349705466879`18.27777450115664, 0.01340419864756909121`18.12724085536913, 0.00947799605496512515`18.976716523596636, 0.006701882613060036048`18.826196816673416, 0.004738921093059018062`18.67567947739863, 0.003350913851287579993`18.525163262693116, 0.002369450855485754227`18.37464770547573, 0.001675453388033632061`18.224132350045736, 0.001184724247120337928`18.07361727702108, 0.0008377261758607943603`18.923102085759098, 0.0005923620176488881336`18.772587203707488, 0.0004188629608292086109`18.622071958311352, 0.0002961810425087227946`18.471557257435247, 0.0002094313977802960823`18.321041791289986, 0.0001480905705357806747`18.170527406295335, 0.0001047156244007626239`18.020011486691043, 0.00007404533760488590105`18.86949771760107, 0.00005235773789460133133`18.71898087467944, 0.00003702272112074360259`18.568468335656576} "zeta="{-0.06040601749876877563`18.781080204123406, 0.007883012151691912509`18.896692196029925, -0.008011833648374390091`18.903731923354556, 0.01144064080746160644`18.058450350624, 0.0237386583293229779`18.37545616968861, 0.01168779082473070385`18.06773243046918, 0.004885944054006554141`18.688948489822163, 0.002373402003303340824`18.37537130460158, 0.001212894340953939295`18.083822969754213, 0.0006249972751135023661`18.795878123894877, 0.0003224651186371937884`18.508482743459076, 0.0001663398835223885456`18.220996393037705, 0.00008574955697221741974`18.93323188492451, 0.00004417448482541540424`18.64517149335064, 0.00002273900545924354474`18.356771465936237, 0.00001169529023458369676`18.068011003889005, 6.010812585670306645`18.77893318708056*^-6, 3.086999363033415198`18.489536539870464*^-6, 1.584255798216639453`18.199825305274242*^-6, 8.125508514825056183`18.909850549745904*^-7, 4.164899139715127979`18.619604488673048*^-7, 2.133434308932441844`18.32907927493971*^-7, 1.092230630148372792`18.03831435157866*^-7, 5.588734106928296953`18.747313447844434*^-8, 2.858054534051642999`18.45607051123303*^-8, 1.46094510682590932`18.164633898172166*^-8, 7.464292052112769325`18.872988623522424*^-9, 3.811842493652989302`18.581134947173375*^-9, 1.945759449315539414`18.289089148217883*^-9, 9.928362274637254967`18.996877615691055*^-10, 5.063561087437688042`18.70445605373027*^-10} "nrch="3 "xi="{-0.001318903379195353245`18.12021298097526, 0.0001999106588834383168`18.30083595055059, -0.0001374894273480736198`18.138269303104973, 0.0001553010114771439382`18.191174284302363, 0.0002579428030281740044`18.411523414943368, 0.00009238826826355355296`18.965616826719252, 0.00002925436142365404765`18.466190622589956, 0.00001053378495221788344`18.02258444796693, 3.938904693546093652`18.59537547266805*^-6, 1.478541592252180351`18.16983354599541*^-6, 5.5406965893625703`18.74356436868122*^-7, 2.070308264238647632`18.316035015742084*^-7, 7.720940287784521577`18.887670193720353*^-8, 2.875418163439535993`18.45870101176251*^-8, 1.068611813573895226`18.02881997102749*^-8, 3.963291385871324903`18.598056003352095*^-9, 1.467022878168494712`18.166436886702765*^-9, 5.41864062604510218`18.733890348779322*^-10, 1.998890104643298279`18.30078891805061*^-10, 7.36776174360021691499999999999999999999999999999`18.867335573335275*^-11, 2.71206772434634967599999999999999999999999999999`18.43330053030663*^-11, 9.969780678889368445`18.998685604550797*^-12, 3.660188755585820685`18.56350348249703*^-12, 1.341803524502289316`18.127688928298447*^-12, 4.914799318342569958000000000000000000000000001`18.691505789367387*^-13, 1.799359941335953643`18.255118047670123*^-13, 6.581637873176714094`18.818333983396283*^-14, 2.40521413220218648399999999999999999999999999`18.381153746944374*^-14, 8.7811742807279733459999999999999999999999999`18.94355259671926*^-15, 3.202537322606464923`18.505494199746185*^-15, 1.1672334462951054960000000000000000000000001`18.067157723482115*^-15} "zeta="{-0.02288105129731085249`18.35947597475962, 0.003041866071380010684`18.48314008882906, -0.003025848731179770195`18.480847212895362, 0.00430402450890920215`18.633874735719143, 0.008921352685542449645`18.950430708560873, 0.004400061904110079587`18.64345878658262, 0.001843629240992129305`18.265673587660782, 0.0008967654312075837427`18.952678858590986, 0.0004585857600705881346`18.661420564962647, 0.0002363900397721299847`18.373629173718815, 0.0001219881030730850181`18.08631747803829, 0.00006293290769931225216`18.798877797989235, 0.00003244442941736318237`18.511140140859712, 0.00001671459920088909796`18.223095967112904, 8.604119615910256361`18.934706439391935*^-6, 4.425408492031804296`18.64595336489763*^-6, 2.274475232813268875`18.356881212077784*^-6, 1.168124766513696615`18.06748923191557*^-6, 5.994901546376122099`18.77778205512183*^-7, 3.074758210742911744`18.48781096991021*^-7, 1.576043865473372159`18.19756830088699*^-7, 8.073210190474799251`18.907046259726698*^-8, 4.133180167361561896`18.616284336804945*^-8, 2.114882689107119978`18.32528628240306*^-8, 1.081548644048715986`18.034046057170254*^-8, 5.528560142200051435`18.74261203840784*^-9, 2.824679942922792187`18.450969246174207*^-9, 1.442507045902388271`18.15911794313734*^-9, 7.363332664450527317`18.8670744217006*^-10, 3.757206588674554948`18.574865075248297*^-10, 1.916221063744355251`18.282445609766654*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.02288105129731085249`18.35947597475962, 0.003041866071380010684`18.48314008882906, -0.003025848731179770195`18.480847212895362, 0.00430402450890920215`18.633874735719143, 0.008921352685542449645`18.950430708560873, 0.004400061904110079587`18.64345878658262, 0.001843629240992129305`18.265673587660782, 0.0008967654312075837427`18.952678858590986, 0.0004585857600705881346`18.661420564962647, 0.0002363900397721299847`18.373629173718815, 0.0001219881030730850181`18.08631747803829, 0.00006293290769931225216`18.798877797989235, 0.00003244442941736318237`18.511140140859712, 0.00001671459920088909796`18.223095967112904, 8.604119615910256361`18.934706439391935*^-6, 4.425408492031804296`18.64595336489763*^-6, 2.274475232813268875`18.356881212077784*^-6, 1.168124766513696615`18.06748923191557*^-6, 5.994901546376122099`18.77778205512183*^-7, 3.074758210742911744`18.48781096991021*^-7, 1.576043865473372159`18.19756830088699*^-7, 8.073210190474799251`18.907046259726698*^-8, 4.133180167361561896`18.616284336804945*^-8, 2.114882689107119978`18.32528628240306*^-8, 1.081548644048715986`18.034046057170254*^-8, 5.528560142200051435`18.74261203840784*^-9, 2.824679942922792187`18.450969246174207*^-9, 1.442507045902388271`18.15911794313734*^-9, 7.363332664450527317`18.8670744217006*^-10, 3.757206588674554948`18.574865075248297*^-10, 1.916221063744355251`18.282445609766654*^-10} BAND="manual_V" thetaCh={"0.0529402677", "0.01130799595", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5720230217 0.540831061 0.5907244846 0.5166567728 0.3410929708 0.2215750529 0.1529420545 0.1075636045 0.07592694061 0.05364950317 0.03792323404 0.02681145826 0.01895706524 0.01340414343 0.009477975536 0.006701875003 0.004738918276 0.003350912811 0.002369450472 0.001675453247 0.001184724195 0.0008377261567 0.0005923620106 0.0004188629583 0.0002961810416 0.0002094313974 0.0001480905704 0.0001047156244 0.00007404533759 0.00005235773789 0.00003702272112 "zetatable" (channel 1) 0.02740079322 -0.003856361779 0.003655170291 -0.005164182814 -0.01065440881 -0.005243752808 -0.002201165333 -0.001072251363 -0.0005487144223 -0.0002829551058 -0.0001460484355 -0.00007535474066 -0.00003885133402 -0.00002001629569 -0.00001030409986 -5.299921708e-6 -2.724004304e-6 -1.399023647e-6 -7.180030388e-7 -3.682671736e-7 -1.887676957e-7 -9.669690086e-8 -4.950592866e-8 -2.533176337e-8 -1.295481359e-8 -6.622208757e-9 -3.383495074e-9 -1.727903482e-9 -8.820251765e-10 -4.500662609e-10 -2.29541712e-10 Precision last xi:18.568468335630282 Precision last zeta: 18.360861616439635 Discretization (channel 2) "xitable" (channel 2) 0.5694852033 0.5412166409 0.5904593447 0.5169562364 0.3415897144 0.2217527186 0.1529982698 0.1075838391 0.07593450557 0.05365234255 0.03792429802 0.02681185581 0.0189572135 0.01340419865 0.009477996055 0.006701882613 0.004738921093 0.003350913851 0.002369450855 0.001675453388 0.001184724247 0.0008377261759 0.0005923620176 0.0004188629608 0.0002961810425 0.0002094313978 0.0001480905705 0.0001047156244 0.0000740453376 0.00005235773789 0.00003702272112 "zetatable" (channel 2) -0.0604060175 0.007883012152 -0.008011833648 0.01144064081 0.02373865833 0.01168779082 0.004885944054 0.002373402003 0.001212894341 0.0006249972751 0.0003224651186 0.0001663398835 0.00008574955697 0.00004417448483 0.00002273900546 0.00001169529023 6.010812586e-6 3.086999363e-6 1.584255798e-6 8.125508515e-7 4.16489914e-7 2.133434309e-7 1.09223063e-7 5.588734107e-8 2.858054534e-8 1.460945107e-8 7.464292052e-9 3.811842494e-9 1.945759449e-9 9.928362275e-10 5.063561087e-10 Precision last xi:18.568468335656576 Precision last zeta: 18.70445605373027 Discretization (channel 3) "xitable" (channel 3) -0.001318903379 0.0001999106589 -0.0001374894273 0.0001553010115 0.000257942803 0.00009238826826 0.00002925436142 0.00001053378495 3.938904694e-6 1.478541592e-6 5.540696589e-7 2.070308264e-7 7.720940288e-8 2.875418163e-8 1.068611814e-8 3.963291386e-9 1.467022878e-9 5.418640626e-10 1.998890105e-10 7.367761744e-11 2.712067724e-11 9.969780679e-12 3.660188756e-12 1.341803525e-12 4.914799318e-13 1.799359941e-13 6.581637873e-14 2.405214132e-14 8.781174281e-15 3.202537323e-15 1.167233446e-15 "zetatable" (channel 3) -0.0228810513 0.003041866071 -0.003025848731 0.004304024509 0.008921352686 0.004400061904 0.001843629241 0.0008967654312 0.0004585857601 0.0002363900398 0.0001219881031 0.0000629329077 0.00003244442942 0.0000167145992 8.604119616e-6 4.425408492e-6 2.274475233e-6 1.168124767e-6 5.994901546e-7 3.074758211e-7 1.576043865e-7 8.07321019e-8 4.133180167e-8 2.114882689e-8 1.081548644e-8 5.528560142e-9 2.824679943e-9 1.442507046e-9 7.363332664e-10 3.757206589e-10 1.916221064e-10 Precision last xi:18.067157723482115 Precision last zeta: 18.282445609766654 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.0228810513 0.003041866071 -0.003025848731 0.004304024509 0.008921352686 0.004400061904 0.001843629241 0.0008967654312 0.0004585857601 0.0002363900398 0.0001219881031 0.0000629329077 0.00003244442942 0.0000167145992 8.604119616e-6 4.425408492e-6 2.274475233e-6 1.168124767e-6 5.994901546e-7 3.074758211e-7 1.576043865e-7 8.07321019e-8 4.133180167e-8 2.114882689e-8 1.081548644e-8 5.528560142e-9 2.824679943e-9 1.442507046e-9 7.363332664e-10 3.757206589e-10 1.916221064e-10 Precision last xi:MachinePrecision Precision last zeta: 18.282445609766654 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.0529402677", "0.01130799595", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.005294026770025088", "0.00113079959487898", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.041050469651644994", "0.01897220836757294", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> 0.2076048175507243 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=4.3298697960381105*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=6.065924424926892*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=5.2388648974499574*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24738856940681242, -0.22386212054647633, -0.1601497688668235, -0.1366796373244448, -0.07725392184632691, -0.07450809540355843, -0.05907216685652459, -0.01650261214089621, 0.01650261214089621, 0.019248438583664675, 0.024508095403558437, 0.06707765011918679, 0.11306721898751429, 0.13285141300202188, 0.20116047641127807, 0.22100098774374277} Lowest energies (GS shifted):{0., 0.023526448860336086, 0.08723880053998892, 0.11070893208236762, 0.17013464756048552, 0.172880474003254, 0.18831640255028784, 0.2308859572659162, 0.26389118154770863, 0.26663700799047707, 0.27189666481037084, 0.3144662195259992, 0.3604557883943267, 0.3802399824088343, 0.4485490458180905, 0.4683895571505552} Scale factor SCALE(Ninit):1.715663207404297 Lowest energies (shifted and scaled):{0., 0.013712743129772127, 0.05084844167753435, 0.06452835941493673, 0.09916552784149855, 0.10076597391443308, 0.10976303608865057, 0.13457533872002408, 0.15381292809033384, 0.15541337416326834, 0.15847904392712098, 0.18329134655849447, 0.21009705566844686, 0.22162856950468512, 0.2614435303399204, 0.2730078695685283} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007946`4.351693554215317} {ham, 0.2116309999999999999`5.078154273235965} {maketable, 0.986331`6.4455676765408745} {xi, 0.092658`5.418427915325362} {_, 0} data gammaPol=0.041050469651645 "Success!"