NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.4426950408889634 faktor=0.9802581434685472 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.2300875218336553008`18.36189306653595 "V[1,2]="0.2040398778524868117`18.30971505487088 "V[2,1]="0 "V[2,2]="-0.1063390612592338552`18.026692822126986 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5934374363385580553`18.77337493982785, 0.5600029086082970453`18.748190282701295, 0.506632434376486529`18.704692989678435, 0.3764665282560649695`18.575726369009768, 0.2586063398211821407`18.412639167549813, 0.1803560812843899575`18.25613079053421, 0.1273255783621850823`18.10491565758676, 0.09007652244788907914`18.95461161117906, 0.06372295567668810612`18.80429591157834, 0.04507108187148688855`18.653897982858595, 0.03187463747186862484`18.503445253995352, 0.02254043089759388829`18.352962214046318, 0.01593908461582941444`18.202463376174933, 0.01127084500138092818`18.05195647733093, 0.00796976549338892018`18.90144554267271, 0.00563550130524151198`18.750932554706257, 0.003984910618311197743`18.600418584600497, 0.00281776038504628467`18.449904059079692, 0.001992458804259534741`18.299389350761892, 0.001408881357294594801`18.148874422462285, 0.0009962298789656133524`18.998359562968837, 0.0007044407623829280259`18.847844478422125, 0.0004981150346818359999`18.697329650306603, 0.0003522203394748481741`18.546814431320755, 0.0002490575689015213888`18.396299744551502, 0.0001761101094299029844`18.245784286936072, 0.0001245288291578707516`18.095269904803665, 0.00008805499262621018517`18.944753985045406, 0.00006226445873775679138`18.79424021714749, 0.0000440274341838387681`18.643723376527667, 0.0000311322735037274575`18.49321083716405} "zeta="{0.02844284130106477029`18.453972978124483, -0.003779682583413971134`18.57745532945098, -0.003429842235740436507`18.535274144030197, -0.007819588140892345246`18.893183879294096, -0.005657510348848280267`18.752625357048966, -0.002852645036448609762`18.455247734397187, -0.001444673975076836599`18.159769849306716, -0.0007499131174825121636`18.87501095034687, -0.000389892356469426324`18.590944721272397, -0.0002021738898938639105`18.305725067144134, -0.0001045845645066852798`18.01946759233019, -0.00005400538928698695937`18.732437100949134, -0.00002785086002070634231`18.444838610514427, -0.00001434654027880926331`18.156747181977416, -7.383149571894222019`18.868241666687442*^-6, -3.796642597094560256`18.57939971607178*^-6, -1.950790186982443234`18.290210562302914*^-6, -1.001584546258362545`18.00068761506115*^-6, -5.138948475217224374`18.710874263328094*^-7, -2.63490277906608359`18.42076459552805*^-7, -1.350146403015679617`18.13038086373535*^-7, -6.914639730238332423`18.839769557222557*^-8, -3.539235059017803041`18.548909407351925*^-8, -1.810523721505454669`18.25780421932228*^-8, -9.257264815135388358`18.96648268742023*^-9, -4.7308931514609434`18.674943139497536*^-9, -2.416513911464271613`18.383189299642407*^-9, -1.233875105837417483`18.091271202168294*^-9, -6.297286111399582479`18.799153425520466*^-10, -3.212613211240278398`18.506858440977677*^-10, -1.638237881066819476`18.214376963928483*^-10} "nrch="2 "xi="{0.5907961600217800369`18.771437663879635, 0.5603487572422907181`18.74845841307976, 0.5068185913472902371`18.704852537488925, 0.3768465084358719186`18.576164495794465, 0.2588216556783859423`18.413000611054457, 0.1804395076274916132`18.256331633350552, 0.1273571900627465392`18.10502346847065, 0.09008857812966891698`18.954669732491826, 0.06372752946824074283`18.804327082466884, 0.04507280695526388187`18.653914605047294, 0.03187528507269820482`18.503454077518754, 0.02254067317980396751`18.352966882158558, 0.0159391749784052808`18.202465838289775, 0.01127087859794965313`18.051957771890713, 0.007969777961861585977`18.901446222113613, 0.005635505927084204399`18.750932910883968, 0.003984912328420689258`18.600418770976308, 0.002817761016722187227`18.449904156438336, 0.001992459037199295104`18.299389401535564, 0.001408881443034024463`18.148874448891874, 0.0009962299104914996376`18.99835957671217, 0.0007044407739676750765`18.84784448556423, 0.0004981150389338866429`18.69732965401386, 0.0003522203410337588895`18.546814433242922, 0.0002490575694724119458`18.396299745546994, 0.0001761101096386928654`18.245784287450952, 0.0001245288292341772257`18.09526990506978, 0.00008805499265408927852`18.94475398518291, 0.00006226445874793380415`18.794240217218473, 0.00004402743418755051391`18.64372337656428, 0.00003113227350508014201`18.493210837182918} "zeta="{-0.06270397445704815886`18.79729506922083, 0.007678534321523933226`18.885278329820377, 0.007731985154345455066`18.88829101149826, 0.01740808138341335548`18.240750908365325, 0.01259975737820311081`18.10036218239359, 0.006337523524021095034`18.80191958438614, 0.003200770086219191426`18.50525447955732, 0.001658694547356818344`18.21976641700015, 0.0008615680463425150594`18.935289583564696, 0.0004465133657696405403`18.649834463433127, 0.0002309095971904923507`18.363441983676186, 0.0001192156580635071045`18.07633330040406, 0.00006147328866658675406`18.78868644740664, 0.00003166375549126930098`18.500562423236673, 0.00001629419762020231725`18.212032979241283, 8.378610384907534921`18.92317199569351*^-6, 4.304936326768035181`18.633966732296575*^-6, 2.210189548838312553`18.34442952096316*^-6, 1.133974101139401542`18.054603135808488*^-6, 5.814084831383742858`18.764481364127406*^-7, 2.979108075912149827`18.474086258811177*^-7, 1.525682488129483345`18.183464161403315*^-7, 7.808970112925944503`18.89259376066778*^-8, 3.994650776472084504`18.601478818072927*^-8, 2.042433685782566837`18.31014796465795*^-8, 1.043757267928948031`18.018599512597476*^-8, 5.33134949420439424`18.726837153436477*^-9, 2.72214258174539099`18.43491086915663*^-9, 1.389265470699488725`18.142785241737432*^-9, 7.087331227969634179`18.850482730083087*^-10, 3.614048815887747335`18.5579940143919*^-10} "nrch="3 "xi="{-0.001372658032528284444`18.13756235582089, 0.0001792971755954614582`18.253573448329796, 0.00009656906205697708689`18.984838013268618, 0.0001972872669179194722`18.295099056434484, 0.0001119236286052050579`18.048921781698855, 0.0000434016363121504382`18.63750610342821, 0.00001645306662819176713`18.21624685642444, 6.276191920913872803`18.797696215494803*^-6, 2.381428541894126138`18.376837554427635*^-6, 8.982593620250864819`18.95340175229433*^-7, 3.372214024243013042`18.527915130187004*^-7, 1.261646930329316251`18.10093783536522*^-7, 4.705539712373294933`18.67260944299449*^-8, 1.749516942941738467`18.242918152700877*^-8, 6.492885442684661679`18.812437740459572*^-9, 2.406801653001002691`18.38144030109491*^-9, 8.905317405190830499`18.94964940329014*^-10, 3.289424903503965313`18.517119976045223*^-10, 1.21302397601099218`18.083869384993832*^-10, 4.46484513897429023`18.64980640018867*^-11, 1.641697513549440913`18.215293140421654*^-11, 6.032709346946781926`18.780512401719864*^-12, 2.214237954608190974`18.345224290806573*^-12, 8.117963841563900251`18.90944711258311*^-13, 2.972889223994703455`18.4731787267952*^-13, 1.087264827508626965999999999999999999999999999`18.036335339042612*^-13, 3.973628590445180655`18.599187271767697*^-14, 1.45179254933862521400000000000000000000000001`18.161904563255167*^-14, 5.2996343346336164139999999999999999999999999`18.72424590508581*^-15, 1.9328745703139971639999999999999999999999999`18.286203672348304*^-15, 7.044075263427619502000000000000000000000001`18.847823987601416*^-16} "zeta="{-0.02375140322200484239`18.375689272637576, 0.002968959754718426391`18.472604310623268, 0.002894428117001612063`18.461562768351882, 0.006544961284306301773`18.815907081893364, 0.004742659731380305041`18.676021966717023, 0.002389839673354087271`18.378368766507485, 0.001208725613044224446`18.08232772495897, 0.0006269076512128516623`18.797203570300347, 0.0003257830558005736423`18.512928492607006, 0.0001688831678644132765`18.227586366753478, 0.00008734883097057788816`18.94125709699583, 0.0000451007751585326839`18.654184006272203, 0.00002325723953509623715`18.366558165860184, 0.00001197974116847417422`18.078447434888208, 6.164915068688614989`18.78992709788975*^-6, 3.170099641517676692`18.50107291303201*^-6, 1.628820122478752884`18.21187312597316*^-6, 8.362586051815401451`18.922340599730894*^-7, 4.290603698845454627`18.632518402821447*^-7, 2.199887491647587226`18.342400470364904*^-7, 1.127220674502453527`18.052008945626486*^-7, 5.772849441192223815`18.7613902310285*^-8, 2.954765614395779605`18.470523036346965*^-8, 1.511510403489382675`18.179411140705025*^-8, 7.728286202051222656`18.888083196956867*^-9, 3.949458213855104006`18.596537523254003*^-9, 2.017334063637613177`18.304777821852436*^-9, 1.030040002753107809`18.012854091343602*^-9, 5.256914490051954946`18.720730912761127*^-10, 2.68182693881135092`18.42843074892786*^-10, 1.367553392077501903`18.135944291080044*^-10} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.02375140322200484239`18.375689272637576, 0.002968959754718426391`18.472604310623268, 0.002894428117001612063`18.461562768351882, 0.006544961284306301773`18.815907081893364, 0.004742659731380305041`18.676021966717023, 0.002389839673354087271`18.378368766507485, 0.001208725613044224446`18.08232772495897, 0.0006269076512128516623`18.797203570300347, 0.0003257830558005736423`18.512928492607006, 0.0001688831678644132765`18.227586366753478, 0.00008734883097057788816`18.94125709699583, 0.0000451007751585326839`18.654184006272203, 0.00002325723953509623715`18.366558165860184, 0.00001197974116847417422`18.078447434888208, 6.164915068688614989`18.78992709788975*^-6, 3.170099641517676692`18.50107291303201*^-6, 1.628820122478752884`18.21187312597316*^-6, 8.362586051815401451`18.922340599730894*^-7, 4.290603698845454627`18.632518402821447*^-7, 2.199887491647587226`18.342400470364904*^-7, 1.127220674502453527`18.052008945626486*^-7, 5.772849441192223815`18.7613902310285*^-8, 2.954765614395779605`18.470523036346965*^-8, 1.511510403489382675`18.179411140705025*^-8, 7.728286202051222656`18.888083196956867*^-9, 3.949458213855104006`18.596537523254003*^-9, 2.017334063637613177`18.304777821852436*^-9, 1.030040002753107809`18.012854091343602*^-9, 5.256914490051954946`18.720730912761127*^-10, 2.68182693881135092`18.42843074892786*^-10, 1.367553392077501903`18.135944291080044*^-10} BAND="manual_V" thetaCh={"0.0529402677", "0.01130799595", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5934374363 0.5600029086 0.5066324344 0.3764665283 0.2586063398 0.1803560813 0.1273255784 0.09007652245 0.06372295568 0.04507108187 0.03187463747 0.0225404309 0.01593908462 0.011270845 0.007969765493 0.005635501305 0.003984910618 0.002817760385 0.001992458804 0.001408881357 0.000996229879 0.0007044407624 0.0004981150347 0.0003522203395 0.0002490575689 0.0001761101094 0.0001245288292 0.00008805499263 0.00006226445874 0.00004402743418 0.0000311322735 "zetatable" (channel 1) 0.0284428413 -0.003779682583 -0.003429842236 -0.007819588141 -0.005657510349 -0.002852645036 -0.001444673975 -0.0007499131175 -0.0003898923565 -0.0002021738899 -0.0001045845645 -0.00005400538929 -0.00002785086002 -0.00001434654028 -7.383149572e-6 -3.796642597e-6 -1.950790187e-6 -1.001584546e-6 -5.138948475e-7 -2.634902779e-7 -1.350146403e-7 -6.91463973e-8 -3.539235059e-8 -1.810523722e-8 -9.257264815e-9 -4.730893151e-9 -2.416513911e-9 -1.233875106e-9 -6.297286111e-10 -3.212613211e-10 -1.638237881e-10 Precision last xi:18.49321083716405 Precision last zeta: 18.214376963928483 Discretization (channel 2) "xitable" (channel 2) 0.59079616 0.5603487572 0.5068185913 0.3768465084 0.2588216557 0.1804395076 0.1273571901 0.09008857813 0.06372752947 0.04507280696 0.03187528507 0.02254067318 0.01593917498 0.0112708786 0.007969777962 0.005635505927 0.003984912328 0.002817761017 0.001992459037 0.001408881443 0.0009962299105 0.000704440774 0.0004981150389 0.000352220341 0.0002490575695 0.0001761101096 0.0001245288292 0.00008805499265 0.00006226445875 0.00004402743419 0.00003113227351 "zetatable" (channel 2) -0.06270397446 0.007678534322 0.007731985154 0.01740808138 0.01259975738 0.006337523524 0.003200770086 0.001658694547 0.0008615680463 0.0004465133658 0.0002309095972 0.0001192156581 0.00006147328867 0.00003166375549 0.00001629419762 8.378610385e-6 4.304936327e-6 2.210189549e-6 1.133974101e-6 5.814084831e-7 2.979108076e-7 1.525682488e-7 7.808970113e-8 3.994650776e-8 2.042433686e-8 1.043757268e-8 5.331349494e-9 2.722142582e-9 1.389265471e-9 7.087331228e-10 3.614048816e-10 Precision last xi:18.493210837182918 Precision last zeta: 18.5579940143919 Discretization (channel 3) "xitable" (channel 3) -0.001372658033 0.0001792971756 0.00009656906206 0.0001972872669 0.0001119236286 0.00004340163631 0.00001645306663 6.276191921e-6 2.381428542e-6 8.98259362e-7 3.372214024e-7 1.26164693e-7 4.705539712e-8 1.749516943e-8 6.492885443e-9 2.406801653e-9 8.905317405e-10 3.289424904e-10 1.213023976e-10 4.464845139e-11 1.641697514e-11 6.032709347e-12 2.214237955e-12 8.117963842e-13 2.972889224e-13 1.087264828e-13 3.97362859e-14 1.451792549e-14 5.299634335e-15 1.93287457e-15 7.044075263e-16 "zetatable" (channel 3) -0.02375140322 0.002968959755 0.002894428117 0.006544961284 0.004742659731 0.002389839673 0.001208725613 0.0006269076512 0.0003257830558 0.0001688831679 0.00008734883097 0.00004510077516 0.00002325723954 0.00001197974117 6.164915069e-6 3.170099642e-6 1.628820122e-6 8.362586052e-7 4.290603699e-7 2.199887492e-7 1.127220675e-7 5.772849441e-8 2.954765614e-8 1.511510403e-8 7.728286202e-9 3.949458214e-9 2.017334064e-9 1.030040003e-9 5.25691449e-10 2.681826939e-10 1.367553392e-10 Precision last xi:18.847823987601416 Precision last zeta: 18.135944291080044 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.02375140322 0.002968959755 0.002894428117 0.006544961284 0.004742659731 0.002389839673 0.001208725613 0.0006269076512 0.0003257830558 0.0001688831679 0.00008734883097 0.00004510077516 0.00002325723954 0.00001197974117 6.164915069e-6 3.170099642e-6 1.628820122e-6 8.362586052e-7 4.290603699e-7 2.199887492e-7 1.127220675e-7 5.772849441e-8 2.954765614e-8 1.511510403e-8 7.728286202e-9 3.949458214e-9 2.017334064e-9 1.030040003e-9 5.25691449e-10 2.681826939e-10 1.367553392e-10 Precision last xi:MachinePrecision Precision last zeta: 18.135944291080044 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.0529402677", "0.01130799595", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.005294026770355281", "0.001130799594949509", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.04105046965292517", "0.018972208368164597", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> 0.20523615927577535 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=3.774758283725532*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=5.559292640654936*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=2.9282132274488504*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24825769956362753, -0.22513288381125313, -0.158996015396741, -0.1359275842812862, -0.07842836208297672, -0.07639128973595728, -0.059356287505310676, -0.017130566577991696, 0.017130566577991696, 0.019167638925011197, 0.02639128973595728, 0.0686170106632763, 0.11240154981573654, 0.13161102749730422, 0.2025178717106899, 0.22178373402917717} Lowest energies (GS shifted):{0., 0.023124815752374406, 0.08926168416688654, 0.11233011528234133, 0.16982933748065082, 0.17186640982767026, 0.18890141205831684, 0.23112713298563584, 0.26538826614161926, 0.26742533848863875, 0.2746489892995848, 0.31687471022690383, 0.36065924937936406, 0.3798687270609318, 0.45077557127431744, 0.4700414335928047} Scale factor SCALE(Ninit):1.4426950408889634 Lowest energies (shifted and scaled):{0., 0.01602890083972653, 0.061871484712309716, 0.07786130269992851, 0.11771672645107656, 0.11912871740500972, 0.13093648117201476, 0.160205120579897, 0.18395312842975578, 0.18536511938368896, 0.1903721725766458, 0.21964081198452806, 0.2499899418501724, 0.2633049371451803, 0.3124538162940918, 0.32580789444120734} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.006955`4.293842127824039} {ham, 0.193595`5.039469125704382} {maketable, 0.887553`6.3997392897811665} {xi, 0.079953`5.3543797575007055} {_, 0} data gammaPol=0.04105046965292517 "Success!"