NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.2131570881878404 faktor=1.1657299587521546 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.2300875218396891131`18.36189306654734 "V[1,2]="0.2040398778578374761`18.30971505488227 "V[2,1]="0 "V[2,2]="-0.1063390612620224579`18.026692822138372 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5857716126125711575`18.767728321281325, 0.5058584395350944618`18.704028999981784, 0.4064778170443429928`18.609036849565737, 0.2951680998125196798`18.47006941946535, 0.2102753373694435934`18.322788338437828, 0.1498780353399499776`18.17573799155673, 0.1065673915570978514`18.02762433571071, 0.07558376635205313332`18.87842852908879, 0.05352946648256353551`18.728592914879165, 0.03788100648168563761`18.578421509497954, 0.02679656538887494749`18.428079132526964, 0.0189518058771758896`18.27765059927111, 0.01340228531667935277`18.127178859245358, 0.009477318462992462278`18.976685474314436, 0.006701643031441060876`18.826181291060553, 0.004738836001952300044`18.675671679224923, 0.003350884021405603572`18.525159396580356, 0.00236943999321624979`18.374645714535713, 0.001675449833592974891`18.22413142869775, 0.001184722703539075987`18.07361671117695, 0.0008377259293211689484`18.923101957947864, 0.000592361641588898453`18.772586927996308, 0.0004188631223453955377`18.622072125777997, 0.000296180811127293045`18.471556918157226, 0.0002094316133640057392`18.321042238342187, 0.0001480903589888542683`18.170526785906556, 0.000104715845791918737`18.0200124048812, 0.00007404512731810720179`18.869496484214608, 0.00005235796001206030555`18.718982717084895, 0.00003702251158139277298`18.568465877651366, 0.00002617901719487552957`18.417953338362402} "zeta="{0.028168981283525827`18.44977114123699, -0.006420770203481601483`18.807587126987706, -0.005978760442544491134`18.77661115242244, -0.005810314316525256109`18.76419962675181, -0.003524058392912975644`18.547043095968668, -0.001911005980789482741`18.28126204624905, -0.001022129237627227233`18.00950581129758, -0.000539781464637307932`18.732217967393627, -0.0002821357746542520759`18.450458157937952, -0.0001465361564183763061`18.165944795991155, -0.00007582778273538692707`18.879828357056525, -0.00003915007470422529162`18.59273259509388, -0.00002018052640914177101`18.304932490622583, -0.00001038985530700535073`18.016609499452585, -5.344037546181082548`18.7278695007478*^-6, -2.746224349396536128`18.438736013499778*^-6, -1.410170787600398635`18.14927171380482*^-6, -7.236453809021779894`18.859525794309125*^-7, -3.710900102553187651`18.569479263296813*^-7, -1.901756307707090877`18.27915486538865*^-7, -9.740454749928767578`18.988579233138825*^-8, -4.985842948107153185`18.69773859429518*^-8, -2.550728084713545275`18.406664163979187*^-8, -1.304349879864015469`18.1153941025253*^-8, -6.666507983877027032`18.823898403562303*^-9, -3.405603707190339281`18.532194109923203*^-9, -1.738983711032253689`18.240295514008498*^-9, -8.875632107018838567`18.948199292523142*^-10, -4.528063926785678407`18.655912549552628*^-10, -2.309371252232610304`18.363493755279894*^-10, -1.177278699498360341`18.070879286400253*^-10} "nrch="2 "xi="{0.5831455718045194248`18.765776982099958, 0.5062834206484478905`18.704393705702493, 0.4067771317777031936`18.60935652974256, 0.2954149720498050469`18.47043250219407, 0.2103942279517261593`18.3230338210183, 0.1499269532628044188`18.175879715577064, 0.1065867448624303188`18.027703199146124, 0.07559125079912891454`18.8784715316183, 0.05353231678465342896`18.728616039292604, 0.03788208175772964786`18.57843383704329, 0.02679696853886493618`18.428085666368016, 0.01895195634853949831`18.277654047418686, 0.01340234132776033961`18.12718067425317, 0.009477339274216272508`18.976686427979732, 0.006701650747857787818`18.826181791116326, 0.004738838857458562911`18.675671940920036, 0.003350885076107741698`18.525159533276, 0.002369440382058667256`18.374645785806607, 0.0016754499767852682`18.224131465814718, 0.001184722756225452733`18.073616730490667, 0.0008377259486834050467`18.923101967985648, 0.0005923616486957835204`18.772586933206775, 0.0004188631249506949775`18.62207212847928, 0.0002961808120811858258`18.471556919555933, 0.0002094316137129983567`18.321042239065886, 0.0001480903591164676287`18.1705267862808, 0.0001047158458385436723`18.02001240507457, 0.00007404512733512821367`18.86949648431444, 0.00005235796001826797285`18.718982717136385, 0.00003702251158365456779`18.568465877677898, 0.0000261790171956992149`18.417953338376066} "zeta="{-0.06210037844345189101`18.793094246801413, 0.01356711917364769766`18.13248763986238, 0.01338583977856921438`18.12664562242307, 0.01294125122525180936`18.111976268137344, 0.007838598743452817111`18.894238433554726, 0.004239642702451231794`18.627329257797392, 0.002263005568019214354`18.354685622517277, 0.001193607503766501128`18.07686154038508, 0.0006234364254187849423`18.794792173135292, 0.0003236680101878306598`18.510099777915276, 0.0001674470485530742516`18.22387749700333, 0.00008644027260378018553`18.936716127833265, 0.00004455254305297903268`18.64887249854921, 0.00002293602596697916568`18.3605181716244, 0.00001179651329523631721`18.07175366150936, 6.061773189441167976`18.782599682540194*^-6, 3.112557304356554477`18.493117355842507*^-6, 1.597184260788276608`18.20335502185383*^-6, 8.190177016902245529`18.913293288406702*^-7, 4.197151367916957954`18.62295463208155*^-7, 2.149638888984988635`18.332365510290956*^-7, 1.100302461845727067`18.041512084662333*^-7, 5.628925130614807386`18.750425472220854*^-8, 2.878350993323669518`18.459143751785838*^-8, 1.471082121234890765`18.167636917325538*^-8, 7.514878683963354344`18.875921973970094*^-9, 3.837188776142840266`18.584013165479384*^-9, 1.958425993740351448`18.291907164795063*^-9, 9.991047734625974248`18.99961103392239*^-10, 5.095457610906765111`18.70718319304653*^-10, 2.597526778024670623`18.414560033414357*^-10} "nrch="3 "xi="{-0.00136471223111547758`18.135041083893835, 0.0002203436126507755846`18.343100465643634, 0.0001553435371236281065`18.19129318968027, 0.000128253961534723689`18.108070788568252, 0.00006182048915843188714`18.791132437122744, 0.00002545065425014086832`18.40569895105682, 0.00001007224412267268864`18.00312624329568, 3.895904071164682994`18.59060825470639*^-6, 1.483820772600475053`18.171381446649654*^-6, 5.598002081688391139`18.74803305562811*^-7, 2.098899893174913167`18.32199172544352*^-7, 7.83403076222568867`18.893985272578025*^-8, 2.916142317595319266`18.46480871520084*^-8, 1.083513034420247317`18.03483414015306*^-8, 4.017474399733193245`18.603953118020318*^-9, 1.486692140313297947`18.17222104545171*^-9, 5.491209440415187686`18.73966800846661*^-10, 2.024472810603156679`18.306311948412752*^-10, 7.455178167778105774`18.87245802691152*^-11, 2.74306912614037341000000000000000000000000000001`18.438236752089782*^-11, 1.00807756851615165100000000000000000000000000001`18.003493951040483*^-11, 3.700136453877069438`18.568217740302973*^-12, 1.356425966657519617`18.132396095075478*^-12, 4.966357780857411101`18.696038003308566*^-13, 1.816998957019553917999999999999999999999999999`18.259354678017566*^-13, 6.64407624225990289099999999999999999999999999`18.8224346074342*^-14, 2.427485484479500929`18.38515664165757*^-14, 8.861838228194535596`18.947523817773714*^-15, 3.231966289195324223`18.509466822247102*^-15, 1.1775852976122406380000000000000000000000001`18.07099237477388*^-15, 4.288481969503350687999999999999999999999999`18.63230358846948*^-16} "zeta="{-0.02352275220625925367`18.371488133648338, 0.005178886208736382946`18.71423636873931, 0.005022740176923145769`18.70094071297001, 0.004868279434464189113`18.687375498350736, 0.002953105386682068016`18.470278945792646, 0.001599675231405144451`18.204031820452624, 0.0008547599814608159048`18.931844180972632, 0.0004511149687774140479`18.654287237981276, 0.0002357050816331223342`18.372368945703936, 0.0001223944509489571385`18.087761728455977, 0.00006332688180596186443`18.80158810404178, 0.00003269305388492207797`18.51445549027824, 0.00001685116038731709366`18.226629812178103, 8.675361113005611438`18.938287561402003*^-6, 4.462024036058911311`18.649531905414346*^-6, 2.292899137868584685`18.36038495100969*^-6, 1.177358104357019735`18.070908577619953*^-6, 6.041593978449514311`18.7811515354285*^-7, 3.098094300779999717`18.49109463281799*^-7, 1.587670844728894105`18.200760469668467*^-7, 8.131591978308424508`18.9101755787689*^-8, 4.16223074794533274`18.61932615318976*^-8, 2.129331830269590209`18.328243346184863*^-8, 1.0888430036982156`18.03696526493226*^-8, 5.564958177541208877`18.745461904819635*^-9, 2.842826031087115183`18.453750283520684*^-9, 1.451592315239856965`18.161844660370516*^-9, 7.408694889268696911`18.86974170969192*^-10, 3.779623205434534758`18.577448506726903*^-10, 1.92762915943545794`18.285023487294108*^-10, 9.826594570396160957`18.99240303812468*^-11} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.02352275220625925367`18.371488133648338, 0.005178886208736382946`18.71423636873931, 0.005022740176923145769`18.70094071297001, 0.004868279434464189113`18.687375498350736, 0.002953105386682068016`18.470278945792646, 0.001599675231405144451`18.204031820452624, 0.0008547599814608159048`18.931844180972632, 0.0004511149687774140479`18.654287237981276, 0.0002357050816331223342`18.372368945703936, 0.0001223944509489571385`18.087761728455977, 0.00006332688180596186443`18.80158810404178, 0.00003269305388492207797`18.51445549027824, 0.00001685116038731709366`18.226629812178103, 8.675361113005611438`18.938287561402003*^-6, 4.462024036058911311`18.649531905414346*^-6, 2.292899137868584685`18.36038495100969*^-6, 1.177358104357019735`18.070908577619953*^-6, 6.041593978449514311`18.7811515354285*^-7, 3.098094300779999717`18.49109463281799*^-7, 1.587670844728894105`18.200760469668467*^-7, 8.131591978308424508`18.9101755787689*^-8, 4.16223074794533274`18.61932615318976*^-8, 2.129331830269590209`18.328243346184863*^-8, 1.0888430036982156`18.03696526493226*^-8, 5.564958177541208877`18.745461904819635*^-9, 2.842826031087115183`18.453750283520684*^-9, 1.451592315239856965`18.161844660370516*^-9, 7.408694889268696911`18.86974170969192*^-10, 3.779623205434534758`18.577448506726903*^-10, 1.92762915943545794`18.285023487294108*^-10, 9.826594570396160957`18.99240303812468*^-11} BAND="manual_V" thetaCh={"0.05294026771", "0.01130799595", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5857716126 0.5058584395 0.406477817 0.2951680998 0.2102753374 0.1498780353 0.1065673916 0.07558376635 0.05352946648 0.03788100648 0.02679656539 0.01895180588 0.01340228532 0.009477318463 0.006701643031 0.004738836002 0.003350884021 0.002369439993 0.001675449834 0.001184722704 0.0008377259293 0.0005923616416 0.0004188631223 0.0002961808111 0.0002094316134 0.000148090359 0.0001047158458 0.00007404512732 0.00005235796001 0.00003702251158 0.00002617901719 "zetatable" (channel 1) 0.02816898128 -0.006420770203 -0.005978760443 -0.005810314317 -0.003524058393 -0.001911005981 -0.001022129238 -0.0005397814646 -0.0002821357747 -0.0001465361564 -0.00007582778274 -0.0000391500747 -0.00002018052641 -0.00001038985531 -5.344037546e-6 -2.746224349e-6 -1.410170788e-6 -7.236453809e-7 -3.710900103e-7 -1.901756308e-7 -9.74045475e-8 -4.985842948e-8 -2.550728085e-8 -1.30434988e-8 -6.666507984e-9 -3.405603707e-9 -1.738983711e-9 -8.875632107e-10 -4.528063927e-10 -2.309371252e-10 -1.177278699e-10 Precision last xi:18.417953338362402 Precision last zeta: 18.070879286400253 Discretization (channel 2) "xitable" (channel 2) 0.5831455718 0.5062834206 0.4067771318 0.295414972 0.210394228 0.1499269533 0.1065867449 0.0755912508 0.05353231678 0.03788208176 0.02679696854 0.01895195635 0.01340234133 0.009477339274 0.006701650748 0.004738838857 0.003350885076 0.002369440382 0.001675449977 0.001184722756 0.0008377259487 0.0005923616487 0.000418863125 0.0002961808121 0.0002094316137 0.0001480903591 0.0001047158458 0.00007404512734 0.00005235796002 0.00003702251158 0.0000261790172 "zetatable" (channel 2) -0.06210037844 0.01356711917 0.01338583978 0.01294125123 0.007838598743 0.004239642702 0.002263005568 0.001193607504 0.0006234364254 0.0003236680102 0.0001674470486 0.0000864402726 0.00004455254305 0.00002293602597 0.0000117965133 6.061773189e-6 3.112557304e-6 1.597184261e-6 8.190177017e-7 4.197151368e-7 2.149638889e-7 1.100302462e-7 5.628925131e-8 2.878350993e-8 1.471082121e-8 7.514878684e-9 3.837188776e-9 1.958425994e-9 9.991047735e-10 5.095457611e-10 2.597526778e-10 Precision last xi:18.417953338376066 Precision last zeta: 18.414560033414357 Discretization (channel 3) "xitable" (channel 3) -0.001364712231 0.0002203436127 0.0001553435371 0.0001282539615 0.00006182048916 0.00002545065425 0.00001007224412 3.895904071e-6 1.483820773e-6 5.598002082e-7 2.098899893e-7 7.834030762e-8 2.916142318e-8 1.083513034e-8 4.0174744e-9 1.48669214e-9 5.49120944e-10 2.024472811e-10 7.455178168e-11 2.743069126e-11 1.008077569e-11 3.700136454e-12 1.356425967e-12 4.966357781e-13 1.816998957e-13 6.644076242e-14 2.427485484e-14 8.861838228e-15 3.231966289e-15 1.177585298e-15 4.28848197e-16 "zetatable" (channel 3) -0.02352275221 0.005178886209 0.005022740177 0.004868279434 0.002953105387 0.001599675231 0.0008547599815 0.0004511149688 0.0002357050816 0.0001223944509 0.00006332688181 0.00003269305388 0.00001685116039 8.675361113e-6 4.462024036e-6 2.292899138e-6 1.177358104e-6 6.041593978e-7 3.098094301e-7 1.587670845e-7 8.131591978e-8 4.162230748e-8 2.12933183e-8 1.088843004e-8 5.564958178e-9 2.842826031e-9 1.451592315e-9 7.408694889e-10 3.779623205e-10 1.927629159e-10 9.82659457e-11 Precision last xi:18.63230358846948 Precision last zeta: 18.99240303812468 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.02352275221 0.005178886209 0.005022740177 0.004868279434 0.002953105387 0.001599675231 0.0008547599815 0.0004511149688 0.0002357050816 0.0001223944509 0.00006332688181 0.00003269305388 0.00001685116039 8.675361113e-6 4.462024036e-6 2.292899138e-6 1.177358104e-6 6.041593978e-7 3.098094301e-7 1.587670845e-7 8.131591978e-8 4.162230748e-8 2.12933183e-8 1.088843004e-8 5.564958178e-9 2.842826031e-9 1.451592315e-9 7.408694889e-10 3.779623205e-10 1.927629159e-10 9.82659457e-11 Precision last xi:MachinePrecision Precision last zeta: 18.99240303812468 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.05294026771", "0.01130799595", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.005294026770632942", "0.0011307995950088166", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.04105046965400168", "0.018972208368662122", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> 0.2058583293149946 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.7200464103316335*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1. 1-abs=0. orthogonality check=4.950125257249032*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=1.700029006457271*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24802740509691323, -0.22479887657437542, -0.15929885396849774, -0.13612669213130024, -0.07811725219056391, -0.07589655388861509, -0.05928060235868203, -0.01696569857996303, 0.01696569857996303, 0.01918639688191181, 0.025896553888615108, 0.06821145766733418, 0.11257786228855016, 0.13193662410579743, 0.2021611064370758, 0.22157623493966305} Lowest energies (GS shifted):{0., 0.023228528522537817, 0.08872855112841549, 0.11190071296561299, 0.1699101529063493, 0.17213085120829813, 0.1887468027382312, 0.2310617065169502, 0.2649931036768763, 0.26721380197882505, 0.27392395898552835, 0.3162388627642474, 0.3606052673854634, 0.37996402920271066, 0.45018851153398903, 0.4696036400365763} Scale factor SCALE(Ninit):1.2131570881878404 Lowest energies (shifted and scaled):{0., 0.019147172900119264, 0.07313855063976439, 0.09223926073148964, 0.14005618444694037, 0.14188669619481797, 0.1555831512472739, 0.19046313850591254, 0.21843263849095673, 0.2202631502388343, 0.22579430285875315, 0.2606742901173918, 0.29724532040951046, 0.31320266180061135, 0.3710883907099454, 0.38709219490944} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007356`4.318186714062013} {ham, 0.219866`5.094733064568806} {maketable, 1.000655`6.451829363260686} {xi, 0.103689`5.4672776795601115} {_, 0} data gammaPol=0.04105046965400168 "Success!"