NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.0201394465967895 faktor=1.3862943611198906 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="0.2300875218447628323`18.361893066556917 "V[1,2]="0.204039877862336877`18.309715054891846 "V[2,1]="0 "V[2,2]="-0.1063390612643673738`18.02669282214795 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5439934495235747569`18.735593670189186, 0.4159330827287764931`18.619023464907247, 0.3221440546726580534`18.50805012063756, 0.2403639026293944714`18.380869246750137, 0.1749487367313967978`18.24291081087972, 0.1255765468693534059`18.09890853656431, 0.08947607092488488179`18.95170690509484, 0.06351289776131519016`18.8028619277767, 0.04499715129071268221`18.65318502004456, 0.03184855427168910291`18.503089722822757, 0.02253121890244550937`18.352784686987345, 0.01593582918488671563`18.202374665930357, 0.01126969458549567649`18.051912146602344, 0.007969358527109686799`18.901423365392553, 0.005635357663192186624`18.750921484928956, 0.003984859604544632554`18.600413024842382, 0.002817742609863534056`18.449901319425827, 0.001992452275710618857`18.299387927737534, 0.001408879291986955915`18.148873785820765, 0.0009962289058533027857`18.998359138751976, 0.0007044406709726084995`18.847844422066782, 0.0004981147614810395958`18.697329412109355, 0.0003522204912197137079`18.546814618425064, 0.0002490573791090044541`18.396299413600413, 0.0001761102916961303504`18.245784736411547, 0.0001245286517796317558`18.095269286196345, 0.00008805517928208449511`18.94475490564659, 0.00006226428208943755524`18.794238985024048, 0.00004402762086779463937`18.643725218007678, 0.00003113209720705250607`18.493208377822622, 0.00002201384169513324611`18.342695839073485} "zeta="{0.02611582288221268866`18.41690371455264, -0.009364739179610823139`18.971495686203177, -0.005407065935816237831`18.732961665559824, -0.003820808298141231945`18.582155248327513, -0.002369650298008365002`18.37468425957503, -0.00134918302927963178`18.130070869771416, -0.0007330839945489341352`18.86515373764146, -0.0003885660649934658158`18.58946486927041, -0.0002032607073034258731`18.30805343249643, -0.0001055799204829028988`18.023581330577905, -0.0000546225164120814726`18.737371703835702, -0.00002818852517101341903`18.45007235409629, -0.00001452353388324403542`18.16207230226348, -7.474066779717098966`18.87355697389*^-6, -3.842393660369263299`18.584601857081637*^-6, -1.973770933104425154`18.295296749011808*^-6, -1.013147057304514705`18.005672487354946*^-6, -5.196675874252896601`18.715725629962513*^-7, -2.66382059037478493`18.42550497153654*^-7, -1.364681199796006806`18.13503120863682*^-7, -6.987017786475493766`18.844291848815864*^-8, -3.575384721673669077`18.553322779986146*^-8, -1.828651561171670369`18.262130961093387*^-8, -9.347685997754475512`18.970704115387612*^-9, -4.776082869758142809`18.679071853625175*^-9, -2.439253358890455396`18.387256911692774*^-9, -1.245185754526678495`18.095234143518795*^-9, -6.353900434895745179`18.803040405185158*^-10, -3.24090038935063626`18.510665682985262*^-10, -1.652420180003848244`18.21812049011162*^-10, -8.42160607100226487199999999999999999999999999999`18.92539492300313*^-11} "nrch="2 "xi="{0.5415738120193821503`18.73365765573165, 0.4164820742539141474`18.61959631373766, 0.3224118509593540405`18.5084109968789, 0.2405134846517906766`18.38113943058798, 0.1750192899882901387`18.24308591767934, 0.1256064176772121455`18.099011829612927, 0.08948799583861971607`18.951764781788565, 0.06351750887470467011`18.802893456938172, 0.04499890493506971539`18.653201945187718, 0.03184921527269463093`18.503098736296582, 0.02253146655066817078`18.35278946043817, 0.01593592157876073251`18.202377183906226, 0.01126972894528344322`18.051913470705973, 0.007969371268430287814`18.901424059737124, 0.005635362379720960935`18.75092184841282, 0.003984861348473075181`18.60041321490638, 0.002817743253652656328`18.449901418652075, 0.001992452512999541743`18.299387979459357, 0.001408879379314051774`18.1488738127398, 0.0009962289379400726588`18.998359152739834, 0.000704440682750975735`18.847844429328262, 0.0004981147658019467262`18.69732941587665, 0.0003522204928032321262`18.54681462037757, 0.0002490573796887188989`18.39629941461129, 0.0001761102919081331832`18.245784736934358, 0.0001245286518570736065`18.095269286466422, 0.00008805517931035472794`18.94475490578602, 0.00006226428209975452496`18.79423898509601, 0.00004402762087155665151`18.64372521804479, 0.00003113209720842303926`18.493208377841743, 0.00002201384169563217562`18.34269583908333} "zeta="{-0.05757241782371969041`18.760214468563184, 0.0201944846289729904`18.305232774284956, 0.01210928231148500865`18.083118404299277, 0.008508551961073428788`18.92985565540476, 0.005261924337384003836`18.721144598958187, 0.002989212100689972625`18.475556731663968, 0.001621755701040845715`18.209985433302574, 0.0008588110766182949479`18.933897637165213, 0.0004490066593948947556`18.652252782243878, 0.0002331550007391296772`18.36764473469559, 0.0001206017270712404733`18.081353527141935, 0.00006223036323322802003`18.79400233593106, 0.00003206023620744767285`18.50596671774405, 0.00001649775508125313987`18.217424851962136, 8.481025742112731808`18.928448381407573*^-6, 4.356372281736724748`18.63912498609647*^-6, 2.236064820476471214`18.349484389002942*^-6, 1.14689213419135494`18.059522574197402*^-6, 5.878790145427197551`18.769287957499913*^-7, 3.011625971209635332`18.478801033688576*^-7, 1.541875184871557291`18.188049218905928*^-7, 7.889841760999922089`18.89706829306827*^-8, 4.035200881535110809`18.60586515976952*^-8, 2.0626594277182383`18.31442752614435*^-8, 1.05386489388409223`18.02278493763024*^-8, 5.382203207221343897`18.730960090698062*^-9, 2.747437603181980013`18.438927837983076*^-9, 1.401925679142422697`18.14672499081047*^-9, 7.150584025404018559`18.85434151433982*^-10, 3.64575873060164347`18.56178792448478*^-10, 1.858036646918622034`18.26905427553361*^-10} "nrch="3 "xi="{-0.001257475768073307732`18.099499624826617, 0.000284739730725001557`18.454448069994726, 0.0001390847494294790714`18.143279512438294, 0.00007775978595609660401`18.890755056467935, 0.00003670080202693126162`18.564675555044044, 0.00001554469944194408301`18.19158232934048, 6.207161100152883911`18.79289301717523*^-6, 2.400492692849049198`18.380300388305532*^-6, 9.129918519561902578`18.960466901667647*^-7, 3.441469971122341223`18.536743984427957*^-7, 1.289394584514924444`18.110385841832723*^-7, 4.810591034619528796`18.68219843755991*^-8, 1.788991078567106267`18.252608174810675*^-8, 6.633968861824917475`18.821773428719588*^-9, 2.45573865093470171`18.390182145654645*^-9, 9.080058993060351567`18.958088670137535*^-10, 3.351998590559060285`18.5253038273471*^-10, 1.235485786025830551`18.091837753310696*^-10, 4.54683670474893371700000000000000000000000000001`18.6577093572181*^-11, 1.67065341867833945099999999999999999999999999999`18.222886363737103*^-11, 6.1326117744491884599999999999999999999999999999`18.787645472505673*^-12, 2.2497554418061335309999999999999999999999999999`18.35213531097952*^-12, 8.244863936403619072`18.916183492951227*^-13, 3.018383953923208459`18.479774483439584*^-13, 1.103829607118017180000000000000000000000000001`18.04290203861087*^-13, 4.03214544900459310900000000000000000000000001`18.605536189747184*^-14, 1.471938181871136755`18.167889570982457*^-14, 5.371710457920177482`18.730112595598236*^-15, 1.958758692561436232`18.29198093678901*^-15, 7.135947170103600155`18.853451626147017*^-16, 2.597750110220534288`18.414597371921023*^-16} "zeta="{-0.02180781778731389134`18.338612209808705, 0.007659173322733927279`18.88418189747211, 0.004546313627346307458`18.657659392217738, 0.003203425172869241253`18.505614583989026, 0.001984409949268503559`18.297631395798927, 0.00112867481222427013`18.05256883333378, 0.0006128191720780033378`18.78733234376136, 0.000324670129928646611`18.511442334810532, 0.000169789284643782364`18.229910278564482, 0.00008817919137384042365`18.945366111915014, 0.00004561543183329040197`18.659111790608943, 0.00002353871919459789557`18.371782828012442, 0.00001212722677179895147`18.083761498689835, 6.240646600650049158`18.795229589769928*^-6, 3.208194276506010743`18.506260659693112*^-6, 1.647947714264355173`18.216943428376453*^-6, 8.458788504525754861`18.927308166410693*^-7, 4.338615282594735938`18.63735114170475*^-7, 2.22392912905861685`18.347120943274597*^-7, 1.139300158125915585`18.05663815765632*^-7, 5.832976739495498789`18.765890244571814*^-8, 2.984784807514408605`18.47491302548954*^-8, 1.526558407193384184`18.18371342536349*^-8, 7.803315356550996718`18.89227915847807*^-9, 3.98694084265208074`18.60063979174457*^-9, 2.036188754061488438`18.30881803449365*^-9, 1.039414425928448815`18.016788740058175*^-9, 5.303819477620504283`18.72458873387193*^-10, 2.705253625611210638`18.432207987756783*^-10, 1.379294539296184753`18.13965701681557*^-10, 7.029523522461860889`18.846925888522165*^-11} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{-0.02180781778731389134`18.338612209808705, 0.007659173322733927279`18.88418189747211, 0.004546313627346307458`18.657659392217738, 0.003203425172869241253`18.505614583989026, 0.001984409949268503559`18.297631395798927, 0.00112867481222427013`18.05256883333378, 0.0006128191720780033378`18.78733234376136, 0.000324670129928646611`18.511442334810532, 0.000169789284643782364`18.229910278564482, 0.00008817919137384042365`18.945366111915014, 0.00004561543183329040197`18.659111790608943, 0.00002353871919459789557`18.371782828012442, 0.00001212722677179895147`18.083761498689835, 6.240646600650049158`18.795229589769928*^-6, 3.208194276506010743`18.506260659693112*^-6, 1.647947714264355173`18.216943428376453*^-6, 8.458788504525754861`18.927308166410693*^-7, 4.338615282594735938`18.63735114170475*^-7, 2.22392912905861685`18.347120943274597*^-7, 1.139300158125915585`18.05663815765632*^-7, 5.832976739495498789`18.765890244571814*^-8, 2.984784807514408605`18.47491302548954*^-8, 1.526558407193384184`18.18371342536349*^-8, 7.803315356550996718`18.89227915847807*^-9, 3.98694084265208074`18.60063979174457*^-9, 2.036188754061488438`18.30881803449365*^-9, 1.039414425928448815`18.016788740058175*^-9, 5.303819477620504283`18.72458873387193*^-10, 2.705253625611210638`18.432207987756783*^-10, 1.379294539296184753`18.13965701681557*^-10, 7.029523522461860889`18.846925888522165*^-11} BAND="manual_V" thetaCh={"0.05294026771", "0.01130799595", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5439934495 0.4159330827 0.3221440547 0.2403639026 0.1749487367 0.1255765469 0.08947607092 0.06351289776 0.04499715129 0.03184855427 0.0225312189 0.01593582918 0.01126969459 0.007969358527 0.005635357663 0.003984859605 0.00281774261 0.001992452276 0.001408879292 0.0009962289059 0.000704440671 0.0004981147615 0.0003522204912 0.0002490573791 0.0001761102917 0.0001245286518 0.00008805517928 0.00006226428209 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 1) 0.02611582288 -0.00936473918 -0.005407065936 -0.003820808298 -0.002369650298 -0.001349183029 -0.0007330839945 -0.000388566065 -0.0002032607073 -0.0001055799205 -0.00005462251641 -0.00002818852517 -0.00001452353388 -7.47406678e-6 -3.84239366e-6 -1.973770933e-6 -1.013147057e-6 -5.196675874e-7 -2.66382059e-7 -1.3646812e-7 -6.987017786e-8 -3.575384722e-8 -1.828651561e-8 -9.347685998e-9 -4.77608287e-9 -2.439253359e-9 -1.245185755e-9 -6.353900435e-10 -3.240900389e-10 -1.65242018e-10 -8.421606071e-11 Precision last xi:18.342695839073485 Precision last zeta: 18.92539492300313 Discretization (channel 2) "xitable" (channel 2) 0.541573812 0.4164820743 0.322411851 0.2405134847 0.17501929 0.1256064177 0.08948799584 0.06351750887 0.04499890494 0.03184921527 0.02253146655 0.01593592158 0.01126972895 0.007969371268 0.00563536238 0.003984861348 0.002817743254 0.001992452513 0.001408879379 0.0009962289379 0.0007044406828 0.0004981147658 0.0003522204928 0.0002490573797 0.0001761102919 0.0001245286519 0.00008805517931 0.0000622642821 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 2) -0.05757241782 0.02019448463 0.01210928231 0.008508551961 0.005261924337 0.002989212101 0.001621755701 0.0008588110766 0.0004490066594 0.0002331550007 0.0001206017271 0.00006223036323 0.00003206023621 0.00001649775508 8.481025742e-6 4.356372282e-6 2.23606482e-6 1.146892134e-6 5.878790145e-7 3.011625971e-7 1.541875185e-7 7.889841761e-8 4.035200882e-8 2.062659428e-8 1.053864894e-8 5.382203207e-9 2.747437603e-9 1.401925679e-9 7.150584025e-10 3.645758731e-10 1.858036647e-10 Precision last xi:18.34269583908333 Precision last zeta: 18.26905427553361 Discretization (channel 3) "xitable" (channel 3) -0.001257475768 0.0002847397307 0.0001390847494 0.00007775978596 0.00003670080203 0.00001554469944 6.2071611e-6 2.400492693e-6 9.12991852e-7 3.441469971e-7 1.289394585e-7 4.810591035e-8 1.788991079e-8 6.633968862e-9 2.455738651e-9 9.080058993e-10 3.351998591e-10 1.235485786e-10 4.546836705e-11 1.670653419e-11 6.132611774e-12 2.249755442e-12 8.244863936e-13 3.018383954e-13 1.103829607e-13 4.032145449e-14 1.471938182e-14 5.371710458e-15 1.958758693e-15 7.13594717e-16 2.59775011e-16 "zetatable" (channel 3) -0.02180781779 0.007659173323 0.004546313627 0.003203425173 0.001984409949 0.001128674812 0.0006128191721 0.0003246701299 0.0001697892846 0.00008817919137 0.00004561543183 0.00002353871919 0.00001212722677 6.240646601e-6 3.208194277e-6 1.647947714e-6 8.458788505e-7 4.338615283e-7 2.223929129e-7 1.139300158e-7 5.832976739e-8 2.984784808e-8 1.526558407e-8 7.803315357e-9 3.986940843e-9 2.036188754e-9 1.039414426e-9 5.303819478e-10 2.705253626e-10 1.379294539e-10 7.029523522e-11 Precision last xi:18.414597371921023 Precision last zeta: 18.846925888522165 Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) -0.02180781779 0.007659173323 0.004546313627 0.003203425173 0.001984409949 0.001128674812 0.0006128191721 0.0003246701299 0.0001697892846 0.00008817919137 0.00004561543183 0.00002353871919 0.00001212722677 6.240646601e-6 3.208194277e-6 1.647947714e-6 8.458788505e-7 4.338615283e-7 2.223929129e-7 1.139300158e-7 5.832976739e-8 2.984784808e-8 1.526558407e-8 7.803315357e-9 3.986940843e-9 2.036188754e-9 1.039414426e-9 5.303819478e-10 2.705253626e-10 1.379294539e-10 7.029523522e-11 Precision last xi:MachinePrecision Precision last zeta: 18.846925888522165 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.05294026771", "0.01130799595", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.005294026770866422", "0.001130799595058688", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.0410504696549069", "0.018972208369080482", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> 0.21052559927025105 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=-1. 1-abs=0. orthogonality check=3.1086244689504383*^-15 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.380296343652459*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=1.970645868709653*^-15 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24634587335467234, -0.222298186663835, -0.16157538045862435, -0.1375839320280575, -0.07584266457633543, -0.0721859229512172, -0.058738391466668566, -0.0157282974707535, 0.0157282974707535, 0.019385039095871744, 0.02218592295121718, 0.0651960169471322, 0.1138664991814824, 0.13438396624186433, 0.19948960088059497, 0.2200633062012477} Lowest energies (GS shifted):{0., 0.024047686690837344, 0.08477049289604799, 0.10876194132661485, 0.1705032087783369, 0.17415995040345514, 0.18760748188800377, 0.23061757588391885, 0.26207417082542583, 0.2657309124505441, 0.2685317963058895, 0.31154189030180457, 0.36021237253615473, 0.38072983959653667, 0.4458354742352673, 0.46640917955592004} Scale factor SCALE(Ninit):1.0201394465967895 Lowest energies (shifted and scaled):{0., 0.023572940710273507, 0.08309696598719367, 0.10661477868486254, 0.16713715889248265, 0.1707217096490652, 0.1839037618963437, 0.2260647567871871, 0.25690034014439084, 0.26048489090097343, 0.26323048010908534, 0.30539147499992875, 0.35310111155669177, 0.3732135257259788, 0.43703385426628244, 0.4572013964481745} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007435`4.322825966353946} {ham, 0.2247199999999999999`5.104216715353477} {maketable, 1.03273`6.465531786615678} {xi, 0.120213`5.531496428907948} {_, 0} data gammaPol=0.04105046965490689 "Success!"