NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.715663207404297 faktor=0.8242955588659627 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="-0.07741600514660126886`18.888830756913833 "V[1,2]="0 "V[2,1]="0 "V[2,2]="-0.3160495175564158599`18.49975513172201 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5693244560603187843`18.75535983988729, 0.5412410214981016043`18.733390705026693, 0.5904425846578158499`18.77117767268855, 0.5169751794174349824`18.71346969260882, 0.3416212279788690132`18.533544849451523, 0.2217640163312762369`18.345891078438186, 0.1530018487268470229`18.184696678445164, 0.1075851280929436826`18.031752241278692, 0.07593498761202689684`18.880441926431878, 0.05365252349944660271`18.729590153442903, 0.03792436582842798054`18.57891832724342, 0.02681188115055365903`18.42832728562199, 0.01895722294697098007`18.27777471764655, 0.01340420216690603981`18.127240969395224, 0.009477997362884266197`18.97671658352724, 0.006701883098144649151`18.826196848107806, 0.004738921272614505728`18.675679493853846, 0.003350913917608767251`18.525163271288662, 0.002369450879951076356`18.374647709959955, 0.001675453397051370873`18.224132352383222, 0.00118472425043976144`18.07361727823791, 0.0008377261770810414624`18.923102086391697, 0.0005923620180968752671`18.772587204035933, 0.0004188629609934379182`18.622071958481634, 0.0002961810425688772043`18.47155725752345, 0.0002094313978023192642`18.321041791335656, 0.0001480905705438362698`18.17052740631896, 0.0001047156244037064903`18.02001148670325, 0.00007404533760596065711`18.869497717607373, 0.00005235773789499327719`18.71898087468269, 0.000037022721120886453`18.568468335658252} "zeta="{-0.06601070754445462208`18.819614387819083, 0.008624389719958113626`18.935728373237275, -0.008749899663157020835`18.942003072909504, 0.01248994909777640175`18.096560668430193, 0.02591507756878027799`18.413552513103888, 0.01276297478892131007`18.105951911363192, 0.005336854111126864905`18.727285331040694, 0.002592821447370030705`18.41377261044776, 0.001325124328335862411`18.12225662738763, 0.0006828556598935914919`18.8343289134378, 0.0003523244805970985726`18.54694282035655, 0.0001817446309059704112`18.259461589806993, 0.00009369145276154121165`18.971699973088292, 0.00004826599692506726436`18.683641280889415, 0.00002484518955543880294`18.3952423145276, 0.00001277857918831298908`18.10648256861282, 6.567578600429963984`18.817405279102378*^-6, 3.372943389811931569`18.528009052218373*^-6, 1.731004410828934115`18.238298174516775*^-6, 8.878175727893775308`18.94832373687084*^-7, 4.550697493780364695`18.658077966873467*^-7, 2.331057701651716455`18.367553023927606*^-7, 1.193406381689994513`18.076788355885608*^-7, 6.106434375753787817`18.785787694211443*^-8, 3.122805874913398969`18.494544987728666*^-8, 1.596278244545441394`18.203108594745526*^-8, 8.155742973490887473`18.91146353062333*^-9, 4.16495252643817649`18.619610055533098*^-9, 2.126005822968022239`18.327564449688417*^-9, 1.084808557543780535`18.03535310248112*^-9, 5.53263115881374933`18.742931718283685*^-10} "nrch="2 "xi="{0.5721845308761048798`18.75753611238927, 0.5408066988610586989`18.73304206248309, 0.5907412525709155871`18.771397299515904, 0.516637841469106962`18.71318621317941, 0.3410615059841057284`18.532832705387815, 0.2215637648057046938`18.345498736057838, 0.1529384769595524274`18.184516760945396, 0.1075623157965448634`18.031660143930903, 0.07592645862306388049`18.880393143900978, 0.05364932222800905537`18.7295642397317, 0.03792316623041346035`18.578904589715407, 0.02681143292452411314`18.428320025269116, 0.01895705578890664531`18.277770888175052, 0.01340413991458351897`18.127238952423042, 0.009477974227689848`18.97671552344048, 0.006701874517726180529`18.826196292080382, 0.004738918096552468227`18.675679202786192, 0.003350912744489299364`18.525163119246734, 0.002369450447197457392`18.374647630640933, 0.001675453237541592224`18.22413231103667, 0.00118472419172433157`18.073617256714094, 0.0008377261554967747534`18.92310207520197, 0.0005923620101726802213`18.77258719822625, 0.0004188629580884749184`18.622071955469647, 0.0002961810415048384275`18.471557255963237, 0.0002094313974127634992`18.32104179052784, 0.0001480905704013458666`18.170527405901087, 0.0001047156243516343742`18.020011486487288, 0.00007404533758694970057`18.86949771749587, 0.00005235773788805990595`18.718980874625178, 0.00003702272111835942846`18.56846833562861} "zeta="{0.03300548326266206089`18.51858609602628, -0.004597739346966279485`18.662544346797784, 0.004393236305534688711`18.642784563936765, -0.006213491104262193303`18.793335680901397, -0.01283082805312386367`18.108254685002983, -0.006318936772415925315`18.800644009814338, -0.002652075390376712558`18.423585865569546, -0.001291670807494069194`18.111151844382494, -0.0006609444096815023789`18.820164933640218, -0.000340813490532025675`18.532516777255633, -0.0001759077974132765179`18.245285090728096, -0.000090759488045985735`18.957892037461573, -0.00004679322980611495787`18.670183022507064, -0.00002410780779445779412`18.382157720288028, -0.00001241028395873487397`18.093781718670428, -6.383210662115506562`18.80503917748395*^-6, -3.280770319095041763`18.515975827264693*^-6, -1.684967673732457245`18.226591573305704*^-6, -8.647516514034469986`18.936891400052943*^-7, -4.435338949230273063`18.646926814281738*^-7, -2.273475311002398887`18.356690242309046*^-7, -1.164592401366326161`18.06617395213347*^-7, -5.962350381049745374`18.77541749401886*^-8, -3.050876605885525413`18.484424642756558*^-8, -1.560232699979329553`18.19318937577773*^-8, -7.975540134541699576`18.90176010483361*^-9, -4.074945995788805554`18.61012185752107*^-9, -2.081013514385010732`18.318274900588264*^-9, -1.062271550114121737`18.02623555030588*^-9, -5.420385910128718519`18.734030207695785*^-10, -2.764487191262510288`18.44161458205667*^-10} "nrch="3 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} BAND="manual_V" thetaCh={"0.005993237853", "0.09988729755", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5693244561 0.5412410215 0.5904425847 0.5169751794 0.341621228 0.2217640163 0.1530018487 0.1075851281 0.07593498761 0.0536525235 0.03792436583 0.02681188115 0.01895722295 0.01340420217 0.009477997363 0.006701883098 0.004738921273 0.003350913918 0.00236945088 0.001675453397 0.00118472425 0.0008377261771 0.0005923620181 0.000418862961 0.0002961810426 0.0002094313978 0.0001480905705 0.0001047156244 0.00007404533761 0.00005235773789 0.00003702272112 "zetatable" (channel 1) -0.06601070754 0.00862438972 -0.008749899663 0.0124899491 0.02591507757 0.01276297479 0.005336854111 0.002592821447 0.001325124328 0.0006828556599 0.0003523244806 0.0001817446309 0.00009369145276 0.00004826599693 0.00002484518956 0.00001277857919 6.5675786e-6 3.37294339e-6 1.731004411e-6 8.878175728e-7 4.550697494e-7 2.331057702e-7 1.193406382e-7 6.106434376e-8 3.122805875e-8 1.596278245e-8 8.155742973e-9 4.164952526e-9 2.126005823e-9 1.084808558e-9 5.532631159e-10 Precision last xi:18.568468335658252 Precision last zeta: 18.742931718283685 Discretization (channel 2) "xitable" (channel 2) 0.5721845309 0.5408066989 0.5907412526 0.5166378415 0.341061506 0.2215637648 0.152938477 0.1075623158 0.07592645862 0.05364932223 0.03792316623 0.02681143292 0.01895705579 0.01340413991 0.009477974228 0.006701874518 0.004738918097 0.003350912744 0.002369450447 0.001675453238 0.001184724192 0.0008377261555 0.0005923620102 0.0004188629581 0.0002961810415 0.0002094313974 0.0001480905704 0.0001047156244 0.00007404533759 0.00005235773789 0.00003702272112 "zetatable" (channel 2) 0.03300548326 -0.004597739347 0.004393236306 -0.006213491104 -0.01283082805 -0.006318936772 -0.00265207539 -0.001291670807 -0.0006609444097 -0.0003408134905 -0.0001759077974 -0.00009075948805 -0.00004679322981 -0.00002410780779 -0.00001241028396 -6.383210662e-6 -3.280770319e-6 -1.684967674e-6 -8.647516514e-7 -4.435338949e-7 -2.273475311e-7 -1.164592401e-7 -5.962350381e-8 -3.050876606e-8 -1.5602327e-8 -7.975540135e-9 -4.074945996e-9 -2.081013514e-9 -1.06227155e-9 -5.42038591e-10 -2.764487191e-10 Precision last xi:18.56846833562861 Precision last zeta: 18.44161458205667 Discretization (channel 3) "xitable" (channel 3) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 3) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Precision last xi:MachinePrecision Precision last zeta: MachinePrecision Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Precision last xi:MachinePrecision Precision last zeta: MachinePrecision Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005993237853", "0.09988729755", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0005993237852858595", "0.009988729754764322", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.013811976175825837", "0.056387156617085016", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> -0.5604809109293273 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=8.881784197001252*^-16 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.4155343563970746*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=8.881784197001252*^-16 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24738856940681242, -0.22386212054647653, -0.1601497688668235, -0.13667963732444482, -0.07725392184632682, -0.07450809540355835, -0.05907216685652464, -0.01650261214089628, 0.01650261214089628, 0.01924843858366477, 0.02450809540355834, 0.0670776501191867, 0.11306721898751444, 0.1328514130020219, 0.20116047641127813, 0.22100098774374277} Lowest energies (GS shifted):{0., 0.02352644886033589, 0.08723880053998892, 0.1107089320823676, 0.1701346475604856, 0.17288047400325407, 0.18831640255028778, 0.23088595726591615, 0.2638911815477087, 0.2666370079904772, 0.2718966648103708, 0.3144662195259991, 0.36045578839432685, 0.38023998240883433, 0.4485490458180905, 0.4683895571505552} Scale factor SCALE(Ninit):1.715663207404297 Lowest energies (shifted and scaled):{0., 0.013712743129772014, 0.05084844167753435, 0.06452835941493672, 0.0991655278414986, 0.10076597391443314, 0.10976303608865054, 0.13457533872002406, 0.15381292809033387, 0.15541337416326842, 0.15847904392712092, 0.18329134655849444, 0.21009705566844697, 0.22162856950468518, 0.2614435303399204, 0.2730078695685283} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007053`4.2999188773405725} {ham, 0.197862`5.048937383796089} {maketable, 1.178418`6.522844361105979} {xi, 0.898736`6.405177131746328} {_, 0} data gammaPol=0.013811976175825838 "Success!"