NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.4426950408889634 faktor=0.9802581434685472 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="-0.07741600514901553209`18.888830756927376 "V[1,2]="0 "V[2,1]="0 "V[2,2]="-0.3160495175662720313`18.499755131735558 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5906288637704714128`18.77131466692628, 0.5603706212290711086`18.74847535828298, 0.5068303722097021735`18.704862632430512, 0.3768706032151150631`18.57619226278956, 0.2588353378628234225`18.41302356871668, 0.1804448161204908752`18.256344410016453, 0.1273592030290158217`18.10503033273355, 0.09008934611506833057`18.954673434741395, 0.06372782089558824692`18.804329068500245, 0.04507291688462535667`18.65391566425927, 0.03187532634296533218`18.50345463981765, 0.02254068862044691229`18.352967179655607, 0.01593918073730921786`18.202465995202523, 0.01127088073911419568`18.051957854395006, 0.007969778756501575204`18.901446265415665, 0.005635506221643946448`18.750932933583915, 0.003984912437409698915`18.600418782854444, 0.002817761056980296139`18.449904162643215, 0.001992459052045068586`18.299389404771485, 0.00140888144849839192`18.148874450576294, 0.0009962299125007159986`18.998359577588065, 0.0007044407747059973487`18.847844486019415, 0.0004981150392048793981`18.697329654250133, 0.0003522203411331117614`18.546814433365423, 0.0002490575695087961445`18.39629974561044, 0.0001761101096519995769`18.24578428748377, 0.0001245288292390404146`18.095269905086745, 0.00008805499265586606904`18.94475398519167, 0.00006226445874858240099`18.794240217222995, 0.00004402743418778707328`18.643723376566612, 0.00003113227350516634964`18.49321083718412} "zeta="{-0.06852185631394895615`18.835829119850747, 0.008402131168794482047`18.924389457187573, 0.0084379078494121601`18.926234778131626, 0.01900499416035743641`18.278867740493983, 0.01375824058127873666`18.138562899401148, 0.006921834305644224312`18.84022119897347, 0.003496455059703066151`18.543627950580433, 0.001812094999356225365`18.258180961891956, 0.0009412971877751821325`18.973726761189308, 0.0004878476198271123991`18.688284190440097, 0.0002522891971808448905`18.401898654777614, 0.0001302548283519383424`18.114793830917726, 0.00006716595665641159768`18.827149204861698, 0.00003459605211558995918`18.539026542658753, 0.00001780319686693168069`18.250497994275555, 9.154563720143152049`18.96163765192016*^-6, 4.703627130889122971`18.672432886746726*^-6, 2.414882978436671992`18.382896090346094*^-6, 1.238996471336385292`18.09307006950656*^-6, 6.352557841742080931`18.80294862810809*^-7, 3.25502125506107085`18.512553828826054*^-7, 1.666986257199405427`18.221932019475837*^-7, 8.532216977422458144`18.93106189118657*^-8, 4.364627726676702289`18.63994720722949*^-8, 2.231601273858015891`18.34861660064537*^-8, 1.14042934592297251`18.057068384197258*^-8, 5.825138428313101464`18.76530625037414*^-9, 2.974268575501656781`18.473380182609564*^-9, 1.517940549986136248`18.181254762785706*^-9, 7.743770084887332515`18.888952450143957*^-10, 3.948788978695317565`18.596463925877117*^-10} "nrch="2 "xi="{0.5936055281210215195`18.773497936781208, 0.5599810589685636497`18.748173337498073, 0.5066206581149795829`18.70468289473685, 0.3764424593108794959`18.575698602014672, 0.2585926697417124109`18.412616209887588, 0.1803507754018745246`18.25611801386831, 0.1273235659273680154`18.104908793323865, 0.09007575457180767853`18.95460790892949, 0.06372266427158922164`18.80429392554498, 0.04507097194660088929`18.653896923646617, 0.0318745962024934229`18.503444691696455, 0.0225404154571274655`18.35296191654927, 0.0159390788569601996`18.202463219262185, 0.01127084286022318575`18.05195639482664, 0.007969764698750259752`18.90144549937066, 0.005635501010682034476`18.750932532006317, 0.003984910509322240127`18.60041857272236, 0.002817760344788184431`18.44990405287481, 0.001992458789413762994`18.299389347525974, 0.001408881351830227344`18.14887442077787, 0.0009962298769563967746`18.998359562092944, 0.0007044407616446058621`18.84784447796694, 0.0004981150344108432448`18.69732965007033, 0.0003522203393754952481`18.54681443119825, 0.0002490575688651372444`18.396299744488058, 0.0001761101094165963814`18.245784286903255, 0.0001245288291530076169`18.095269904786704, 0.0000880549926244334353`18.94475398503664, 0.00006226445873710819453`18.794240217142963, 0.00004402743418360220197`18.643723376525333, 0.00003113227350364123632`18.493210837162845} "zeta="{0.03426072315796555023`18.534796525593865, -0.004503279430684822664`18.653528895983438, -0.004135764930807298533`18.61655584629612, -0.009416500917836806081`18.97388955307094, -0.006815993551923958151`18.83352917090695, -0.003436955818071759424`18.536173949335083, -0.00174035894856085639`18.240638830640123, -0.0009033135694818429651`18.95583853420765, -0.0004696214979019531555`18.671747969428846, -0.0002435081439513752072`18.38651349045414, -0.0001259641644970880994`18.100247010397403, -0.0000650445595754283617`18.813210977374474, -0.0000335435280105219431`18.52560873850033, -0.00001727883690312429551`18.237514505298225, -8.892148818622659651`18.949006722421668*^-6, -4.572595932322178428`18.660162825671936*^-6, -2.349480991095121681`18.370971935634394*^-6, -1.206277975858315677`18.081447398575687*^-6, -6.189172177220350269`18.79163256454394*^-7, -3.173375789420887418`18.50152150406015*^-7, -1.626059582156574473`18.211136454989745*^-7, -8.327677420934993613`18.920523894093595*^-8, -4.262481923547904185`18.629662550236322*^-8, -2.180500671737384634`18.338556224800683*^-8, -1.114894069597874291`18.047233605344182*^-8, -5.697613931479862166`18.755693018243516*^-9, -2.91030284566450968`18.463938183954134*^-9, -1.486001099568177368`18.172019130781365*^-9, -7.584036904645464774`18.87990043765344*^-10, -3.869052068143067838`18.58760457432064*^-10, -1.972978043440454375`18.295122252172764*^-10} "nrch="3 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} BAND="manual_V" thetaCh={"0.005993237853", "0.09988729755", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5906288638 0.5603706212 0.5068303722 0.3768706032 0.2588353379 0.1804448161 0.127359203 0.09008934612 0.0637278209 0.04507291688 0.03187532634 0.02254068862 0.01593918074 0.01127088074 0.007969778757 0.005635506222 0.003984912437 0.002817761057 0.001992459052 0.001408881448 0.0009962299125 0.0007044407747 0.0004981150392 0.0003522203411 0.0002490575695 0.0001761101097 0.0001245288292 0.00008805499266 0.00006226445875 0.00004402743419 0.00003113227351 "zetatable" (channel 1) -0.06852185631 0.008402131169 0.008437907849 0.01900499416 0.01375824058 0.006921834306 0.00349645506 0.001812094999 0.0009412971878 0.0004878476198 0.0002522891972 0.0001302548284 0.00006716595666 0.00003459605212 0.00001780319687 9.15456372e-6 4.703627131e-6 2.414882978e-6 1.238996471e-6 6.352557842e-7 3.255021255e-7 1.666986257e-7 8.532216977e-8 4.364627727e-8 2.231601274e-8 1.140429346e-8 5.825138428e-9 2.974268576e-9 1.51794055e-9 7.743770085e-10 3.948788979e-10 Precision last xi:18.49321083718412 Precision last zeta: 18.596463925877117 Discretization (channel 2) "xitable" (channel 2) 0.5936055281 0.559981059 0.5066206581 0.3764424593 0.2585926697 0.1803507754 0.1273235659 0.09007575457 0.06372266427 0.04507097195 0.0318745962 0.02254041546 0.01593907886 0.01127084286 0.007969764699 0.005635501011 0.003984910509 0.002817760345 0.001992458789 0.001408881352 0.000996229877 0.0007044407616 0.0004981150344 0.0003522203394 0.0002490575689 0.0001761101094 0.0001245288292 0.00008805499262 0.00006226445874 0.00004402743418 0.0000311322735 "zetatable" (channel 2) 0.03426072316 -0.004503279431 -0.004135764931 -0.009416500918 -0.006815993552 -0.003436955818 -0.001740358949 -0.0009033135695 -0.0004696214979 -0.000243508144 -0.0001259641645 -0.00006504455958 -0.00003354352801 -0.0000172788369 -8.892148819e-6 -4.572595932e-6 -2.349480991e-6 -1.206277976e-6 -6.189172177e-7 -3.173375789e-7 -1.626059582e-7 -8.327677421e-8 -4.262481924e-8 -2.180500672e-8 -1.11489407e-8 -5.697613931e-9 -2.910302846e-9 -1.4860011e-9 -7.584036905e-10 -3.869052068e-10 -1.972978043e-10 Precision last xi:18.493210837162845 Precision last zeta: 18.295122252172764 Discretization (channel 3) "xitable" (channel 3) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 3) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Precision last xi:MachinePrecision Precision last zeta: MachinePrecision Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Precision last xi:MachinePrecision Precision last zeta: MachinePrecision Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005993237853", "0.09988729755", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0005993237853232399", "0.00998872975538733", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.013811976176256572", "0.056387156618843484", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> -0.5611088653802684 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=0. diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1. 1-abs=0. orthogonality check=3.2751579226442118*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.2482576995636272, -0.22513288381125313, -0.15899601539674105, -0.13592758428128632, -0.07842836208297674, -0.07639128973595725, -0.05935628750531074, -0.017130566577991703, 0.017130566577991703, 0.019167638925011193, 0.026391289735957252, 0.06861701066327627, 0.11240154981573652, 0.13161102749730422, 0.20251787171069, 0.22178373402917714} Lowest energies (GS shifted):{0., 0.023124815752374073, 0.08926168416688615, 0.11233011528234088, 0.16982933748065046, 0.17186640982766993, 0.18890141205831645, 0.2311271329856355, 0.2653882661416189, 0.26742533848863836, 0.2746489892995845, 0.3168747102269035, 0.3606592493793637, 0.37986872706093144, 0.4507755712743172, 0.47004143359280437} Scale factor SCALE(Ninit):1.4426950408889634 Lowest energies (shifted and scaled):{0., 0.016028900839726298, 0.061871484712309445, 0.0778613026999282, 0.11771672645107631, 0.11912871740500948, 0.1309364811720145, 0.16020512057989678, 0.18395312842975556, 0.18536511938368871, 0.19037217257664557, 0.2196408119845278, 0.24998994185017215, 0.26330493714518, 0.31245381629409164, 0.3258078944412071} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.008175`4.364032754828297} {ham, 0.217776`5.090585005801558} {maketable, 1.340227`6.578723356411564} {xi, 1.452371`6.613622562113508} {_, 0} data gammaPol=0.013811976176256572 "Success!"