NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.2131570881878404 faktor=1.1657299587521546 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="-0.07741600515104565816`18.888830756938766 "V[1,2]="0 "V[2,1]="0 "V[2,2]="-0.3160495175745600127`18.499755131746944 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5829792498644171816`18.765653097075038, 0.5063102955121788762`18.704416758591, 0.4067960944949384761`18.609376774763394, 0.2954306426607567482`18.47045553920982, 0.2104017863188206161`18.323049422673307, 0.1499300661081554853`18.175888732484935, 0.1065879770469266852`18.02770821973133, 0.07559172745766203072`18.878474270156367, 0.05353249833925766837`18.728617512197825, 0.0378821502549768277`18.57843462232087, 0.02679699422148568849`18.428086082602228, 0.01895196593452728312`18.277654267086803, 0.01340234489606898297`18.127180789881965, 0.00947734060004963054`18.9766864887354, 0.006701651239453967381`18.826181822973773, 0.004738839039377005027`18.67567195759209, 0.003350885143300714238`18.525159541984607, 0.002369440406831054089`18.374645790347135, 0.001675449985907770216`18.22413146817937, 0.001184722759582000195`18.07361673172111, 0.0008377259499169357939`18.923101968625136, 0.0005923616491485496002`18.772586933538722, 0.0004188631251166737533`18.622072128651375, 0.0002961808121419564959`18.471556919645046, 0.0002094316137352320094`18.321042239111993, 0.0001480903591245976542`18.17052678630464, 0.0001047158458415140475`18.020012405086888, 0.00007404512733621256492`18.8694964843208, 0.00005235796001866345592`18.718982717139667, 0.00003702251158379867181`18.56846587767959, 0.00002617901719575169706`18.417953338376936} "zeta="{-0.06786225246857818805`18.831628270552827, 0.0148292747334429157`18.171119911179023, 0.01461109917120875963`18.164682888489704, 0.01412981638591637515`18.150136518316966, 0.008560263672416268746`18.932487141979937, 0.004630812360844954387`18.665657183865715, 0.002472097501770716046`18.39306559572339, 0.001303982128686936078`18.11527163935155, 0.0006811129958038917047`18.833219166807456, 0.0003536194897669513366`18.54853619317639, 0.0001829444382788723573`18.262319210972063, 0.0000944410706328838726`18.97516090182175, 0.00004867647525363767231`18.68731912269449, 0.00002505913018017257547`18.398965992256404, 0.00001288849844260091524`18.110202323398536, 6.622912043243262254`18.821048987360378*^-6, 3.400691141166380832`18.531567190069094*^-6, 1.745039723347819907`18.241805317504028*^-6, 8.948371381299049221`18.951744000178934*^-7, 4.585700936182670591`18.661405728108544*^-7, 2.348642777071240455`18.370816966652285*^-7, 1.2021644497180076`18.07996388091127*^-7, 6.150035057287550104`18.788877591408447*^-8, 3.144822800940549817`18.49759617959312*^-8, 1.607272964665224297`18.206089639663663*^-8, 8.210601568743250353`18.9143749778764*^-9, 4.192435978342013171`18.62246643932462*^-9, 2.139738481054068549`18.33036069709896*^-9, 1.091603235745947208`18.03806481434169*^-9, 5.567204987193558436`18.745637212535257*^-10, 2.838012360083864815`18.453014282560684*^-10} "nrch="2 "xi="{0.585938731203994867`18.767852206306245, 0.5058315886558011343`18.704005947093272, 0.4064588691635462325`18.6090166045449, 0.2951524431277023908`18.470046382449603, 0.210267783544837078`18.32277273678282, 0.1498749235748607633`18.17572897464886, 0.1065661596105750286`18.027619315125502, 0.07558328974372030551`18.878425790550722, 0.0535292849382417793`18.728591441973943, 0.03788093798650662286`18.578420724220372, 0.02679653970666521362`18.42807871629275, 0.01895179629126904353`18.277650379602992, 0.01340228174838656305`18.127178743616565, 0.009477317137162209401`18.976685413558766, 0.006701642539845489334`18.826181259203103, 0.004738835820033975021`18.675671662552865, 0.003350883954212654451`18.525159387871753, 0.002369439968443867294`18.374645709995185, 0.001675449824470473742`18.224131426333102, 0.001184722700182528959`18.07361670994651, 0.0008377259280876384181`18.923101957308376, 0.00059236164113613259`18.77258692766436, 0.0004188631221794170871`18.622072125605904, 0.0002961808110665225375`18.47155691806812, 0.0002094316133417721678`18.32104223829608, 0.0001480903589807242428`18.17052678588271, 0.0001047158457889483347`18.020012404868883, 0.0000740451273170228641`18.869496484208245, 0.0000523579600116648428`18.718982717081616, 0.00003702251158124866218`18.56846587764968, 0.00002617901719482304402`18.41795333836153} "zeta="{0.03393085530865209976`18.530594807217952, -0.007682925763276969577`18.885526636812337, -0.007204019835183776178`18.857574899913597, -0.006998879477190384814`18.84502851489621, -0.004245723321876957237`18.62795168938316, -0.002302175639183130958`18.36213845405407, -0.001231221171378659753`18.090336074768416, -0.0006501560895576577719`18.813017634636005, -0.0003398123450392674942`18.53123915229949, -0.0001764876359975316774`18.246714285893084, -0.00009132517246123134178`18.960590501019627, -0.0000471508727333562667`18.673489735668745, -0.00002430445860981386152`18.38568595145915, -0.00001251295952018268891`18.09736003961147, -6.436022693527451576`18.808617566759555*^-6, -3.307363203193968761`18.51948189025134*^-6, -1.698304624410582438`18.230015592171096*^-6, -8.71500843465213923`18.940267811769722*^-7, -4.469094466978121836`18.65021953480216*^-7, -2.290305875964957077`18.35989348730616*^-7, -1.173049363064121272`18.069316288036486*^-7, -6.00446282677016328`18.778474160480872*^-8, -3.071838011380348837`18.48739831011646*^-8, -1.570821687506525463`18.196126888714623*^-8, -8.028416418384844705`18.904629890411925*^-9, -4.101326591921858045`18.612924353881986*^-9, -2.094230913216427949`18.32102456598023*^-9, -1.068875698058741942`18.028927203070335*^-9, -5.453048550094843346`18.736639364355522*^-10, -2.781118628431681901`18.444219514061743*^-10, -1.417764281450016142`18.151604030723473*^-10} "nrch="3 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} BAND="manual_V" thetaCh={"0.005993237854", "0.09988729756", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5829792499 0.5063102955 0.4067960945 0.2954306427 0.2104017863 0.1499300661 0.106587977 0.07559172746 0.05353249834 0.03788215025 0.02679699422 0.01895196593 0.0134023449 0.0094773406 0.006701651239 0.004738839039 0.003350885143 0.002369440407 0.001675449986 0.00118472276 0.0008377259499 0.0005923616491 0.0004188631251 0.0002961808121 0.0002094316137 0.0001480903591 0.0001047158458 0.00007404512734 0.00005235796002 0.00003702251158 0.0000261790172 "zetatable" (channel 1) -0.06786225247 0.01482927473 0.01461109917 0.01412981639 0.008560263672 0.004630812361 0.002472097502 0.001303982129 0.0006811129958 0.0003536194898 0.0001829444383 0.00009444107063 0.00004867647525 0.00002505913018 0.00001288849844 6.622912043e-6 3.400691141e-6 1.745039723e-6 8.948371381e-7 4.585700936e-7 2.348642777e-7 1.20216445e-7 6.150035057e-8 3.144822801e-8 1.607272965e-8 8.210601569e-9 4.192435978e-9 2.139738481e-9 1.091603236e-9 5.567204987e-10 2.83801236e-10 Precision last xi:18.417953338376936 Precision last zeta: 18.453014282560684 Discretization (channel 2) "xitable" (channel 2) 0.5859387312 0.5058315887 0.4064588692 0.2951524431 0.2102677835 0.1498749236 0.1065661596 0.07558328974 0.05352928494 0.03788093799 0.02679653971 0.01895179629 0.01340228175 0.009477317137 0.00670164254 0.00473883582 0.003350883954 0.002369439968 0.001675449824 0.0011847227 0.0008377259281 0.0005923616411 0.0004188631222 0.0002961808111 0.0002094316133 0.000148090359 0.0001047158458 0.00007404512732 0.00005235796001 0.00003702251158 0.00002617901719 "zetatable" (channel 2) 0.03393085531 -0.007682925763 -0.007204019835 -0.006998879477 -0.004245723322 -0.002302175639 -0.001231221171 -0.0006501560896 -0.000339812345 -0.000176487636 -0.00009132517246 -0.00004715087273 -0.00002430445861 -0.00001251295952 -6.436022694e-6 -3.307363203e-6 -1.698304624e-6 -8.715008435e-7 -4.469094467e-7 -2.290305876e-7 -1.173049363e-7 -6.004462827e-8 -3.071838011e-8 -1.570821688e-8 -8.028416418e-9 -4.101326592e-9 -2.094230913e-9 -1.068875698e-9 -5.45304855e-10 -2.781118628e-10 -1.417764281e-10 Precision last xi:18.41795333836153 Precision last zeta: 18.151604030723473 Discretization (channel 3) "xitable" (channel 3) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 3) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Precision last xi:MachinePrecision Precision last zeta: MachinePrecision Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Precision last xi:MachinePrecision Precision last zeta: MachinePrecision Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005993237854", "0.09988729756", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0005993237853546729", "0.009988729755911212", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.013811976176618772", "0.05638715662032216", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> -0.5609439973938825 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=0.9999999999999997 1-abs=3.3306690738754696*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=2.886579864025407*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=2.220446049250313*^-16 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24802740509691323, -0.22479887657437556, -0.15929885396849774, -0.13612669213130027, -0.07811725219056394, -0.07589655388861515, -0.05928060235868208, -0.016965698579963044, 0.016965698579963044, 0.01918639688191184, 0.025896553888615143, 0.06821145766733419, 0.11257786228855023, 0.13193662410579743, 0.20216110643707597, 0.22157623493966316} Lowest energies (GS shifted):{0., 0.023228528522537678, 0.08872855112841549, 0.11190071296561296, 0.1699101529063493, 0.17213085120829807, 0.18874680273823116, 0.23106170651695018, 0.2649931036768763, 0.26721380197882505, 0.27392395898552835, 0.3162388627642474, 0.36060526738546345, 0.37996402920271066, 0.4501885115339892, 0.4696036400365764} Scale factor SCALE(Ninit):1.2131570881878404 Lowest energies (shifted and scaled):{0., 0.01914717290011915, 0.07313855063976439, 0.09223926073148962, 0.14005618444694037, 0.14188669619481795, 0.15558315124727387, 0.1904631385059125, 0.21843263849095673, 0.2202631502388343, 0.22579430285875315, 0.2606742901173918, 0.2972453204095105, 0.31320266180061135, 0.37108839070994554, 0.38709219490944013} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.007089`4.302129969848006} {ham, 0.205753`5.065921165359922} {maketable, 0.928009`6.419097181602102} {xi, 0.094209`5.425637387410188} {_, 0} data gammaPol=0.013811976176618772 "Success!"