NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:4 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + hybV[1, 2]*nc[d[0, 0], f[1, 0, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[2, 1]*nc[d[0, 1], f[1, 0, 0]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + hybV[2, 1]*nc[f[0, 0, 0], d[1, 1]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + coefzeta[3, 0]*nc[f[0, 0, 0], f[1, 0, 1]] + hybV[1, 2]*nc[f[0, 0, 1], d[1, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[4, 0]*nc[f[0, 0, 1], f[1, 0, 0]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=(coefzeta[3, 0] - coefzeta[4, 0])*(nc[f[0, 0, 0], f[1, 0, 1]] - nc[f[0, 0, 1], f[1, 0, 0]]) SCALE[0]=1.0201394465967895 faktor=1.3862943611198906 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, VDIM="2 "V[1,1]="-0.07741600515275280647`18.888830756948344 "V[1,2]="0 "V[2,1]="0 "V[2,2]="-0.3160495175815293822`18.499755131756523 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5414205534174033607`18.73353473844286, 0.4165168229929107069`18.61963254712442, 0.3224288405850821437`18.508433881603146, 0.2405229899714615982`18.381156593976204, 0.1750237783476377151`18.24309705499285, 0.1256083192507204405`18.099018404409385, 0.08948875527342767255`18.951768467388447, 0.0635178025952015668`18.80289546521744, 0.04499901665233966425`18.653203023394703, 0.03184925738488306873`18.50309931053613, 0.02253148232878563959`18.352789764561606, 0.01593592746544430019`18.20237734433333, 0.01126973113446590007`18.051913555069117, 0.007969372080228366226`18.90142410397642, 0.00563536268022973505`18.75092187157181, 0.003984861459585825258`18.600413227016123, 0.002817743294671098877`18.449901424974186, 0.001992452528118196769`18.299387982754766, 0.001408879384878022065`18.148873814454923, 0.0009962289399844533825`18.998359153631057, 0.0007044406835014243749`18.84784442979092, 0.0004981147660772499439`18.697329416116677, 0.000352220492904124782`18.546814620501973, 0.0002490573797256547938`18.3962994146757, 0.0001761102919216407431`18.245784736967668, 0.0001245286518620077564`18.09526928648363, 0.00008805517931215592657`18.944754905794902, 0.00006226428210041183608`18.794238985100595, 0.00004402762087179633473`18.64372521804715, 0.00003113209720851037174`18.49320837784296, 0.00002201384169566396985`18.342695839083955} "zeta="{-0.06291422042197071518`18.798748819575316, 0.02206118955541444202`18.343628926210428, 0.01321896416460949589`18.121197425254074, 0.009291188863137149131`18.968071288123447, 0.00574708060228062978`18.75944728811686, 0.003265280351048168578`18.513920474948378, 0.001771688419690766294`18.24838734649732, 0.000938257006901495284`18.97232181640757, 0.0004905570532026717325`18.690689524356475, 0.0002547349321112850795`18.40608850437833, 0.0001317653690442470893`18.119801282721983, 0.00006799115688012162539`18.832452430825214, 0.00003502823574180884304`18.54441826386944, 0.00001802508694544469736`18.255877368250594, 9.266198576101114797`18.966901602966303*^-6, 4.759691060617694231`18.677578764690406*^-6, 2.443085340861396222`18.387938637836246*^-6, 1.253075498918429112`18.09797723841304*^-6, 6.423075116928596197`18.807743001054554*^-7, 3.290458596460547517`18.517256430482668*^-7, 1.684631618702275874`18.226504947666843*^-7, 8.620338832946536199`18.93552433663526*^-8, 4.408811218425423007`18.644321503101352*^-8, 2.253637989729690389`18.3528841549712*^-8, 1.151441397747320776`18.061241839579797*^-8, 5.880540624247017731`18.76941725453435*^-9, 3.001824186692340614`18.477385252535726*^-9, 1.531731508532987066`18.18518264611804*^-9, 7.81266857066431155`18.89279940104263*^-10, 3.983327670125057918`18.60024603311633*^-10, 2.030077406347719327`18.307512597769747*^-10} "nrch="2 "xi="{0.5441474364290095345`18.735716587477977, 0.4158983826894648295`18.618987231520485, 0.3221270800530505185`18.508027235913314, 0.2403544035967567771`18.380852083361912, 0.1749442502964376756`18.242899673566207, 0.1255746457768444624`18.09890196176785, 0.08947531159772099951`18.95170321949496, 0.06351260406349930332`18.802859919497436, 0.04499703957807379973`18.653183941837575, 0.03184851216043036587`18.50308914858321, 0.02253120312451252494`18.352784382863913, 0.01593582329823944876`18.202374505503258, 0.0112696923963203164`18.0519120622392, 0.007969357715312994431`18.901423321153253, 0.005635357362683683126`18.750921461769966, 0.003984859493431934518`18.60041301273264, 0.002817742568845101915`18.449901313103716, 0.001992452260591966867`18.299387924442122, 0.001408879286422986491`18.148873784105643, 0.000996228903808922062`18.998359137860753, 0.0007044406702221599681`18.847844421604126, 0.0004981147612057365949`18.697329411869323, 0.0003522204911188211605`18.54681461830066, 0.0002490573790720686676`18.396299413536006, 0.0001761102916826228989`18.24578473637824, 0.0001245286517746975788`18.095269286179136, 0.00008805517928028326938`18.944754905637705, 0.00006226428208878024412`18.794238985019465, 0.00004402762086755494938`18.643725218005315, 0.00003113209720696517358`18.493208377821404, 0.00002201384169510145188`18.34269583907286} "zeta="{0.03145762548046371343`18.497725937624477, -0.01123144410605263904`18.050435600158927, -0.006516747788940902876`18.81403091326339, -0.004603445200205127062`18.66308297764061, -0.002854806562905147505`18.455576686484154, -0.001625251279637834889`18.210920516652408, -0.0008830167131988427877`18.945968923714986, -0.0004680119952766248438`18.670256984304224, -0.0002448111011111423515`18.388831107272548, -0.0001271598518550809474`18.10435001327735, -0.00006578615838512190893`18.818134526299062, -0.00003394931881791443424`18.530831064725835, -0.00001749153341760181578`18.24282788412769, -9.001398643894550824`18.954309995676233*^-6, -4.627566494347055834`18.665352667926406*^-6, -2.377089711987164936`18.37604557242476*^-6, -1.220167577691143096`18.086419480731024*^-6, -6.258509521546556909`18.796470917293437*^-7, -3.208105561897044409`18.50624865019664*^-7, -1.64351382504650315`18.21577336166751*^-7, -8.414582124737250841`18.92503255341619*^-8, -4.305881793574623479`18.63406210326199*^-8, -2.202261898041361285`18.342868965003923*^-8, -1.125747161803026519`18.051440860707288*^-8, -5.751847908500561577`18.759807393826108*^-9, -2.937590775751196448`18.467991295807014*^-9, -1.499572337980044904`18.175967420564245*^-9, -7.651958729303233139`18.883772619002382*^-10, -3.902984934884317096`18.59139687495298*^-10, -1.98998911942627066`18.298850701843854*^-10, -1.014201366479147263`18.00612419135675*^-10} "nrch="3 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "nrch="4 "xi="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} "zeta="{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} BAND="manual_V" thetaCh={"0.005993237854", "0.09988729756", "thetaCh(3.)", "thetaCh(4.)"} Discretization (channel 1) "xitable" (channel 1) 0.5414205534 0.416516823 0.3224288406 0.24052299 0.1750237783 0.1256083193 0.08948875527 0.0635178026 0.04499901665 0.03184925738 0.02253148233 0.01593592747 0.01126973113 0.00796937208 0.00563536268 0.00398486146 0.002817743295 0.001992452528 0.001408879385 0.00099622894 0.0007044406835 0.0004981147661 0.0003522204929 0.0002490573797 0.0001761102919 0.0001245286519 0.00008805517931 0.0000622642821 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 1) -0.06291422042 0.02206118956 0.01321896416 0.009291188863 0.005747080602 0.003265280351 0.00177168842 0.0009382570069 0.0004905570532 0.0002547349321 0.000131765369 0.00006799115688 0.00003502823574 0.00001802508695 9.266198576e-6 4.759691061e-6 2.443085341e-6 1.253075499e-6 6.423075117e-7 3.290458596e-7 1.684631619e-7 8.620338833e-8 4.408811218e-8 2.25363799e-8 1.151441398e-8 5.880540624e-9 3.001824187e-9 1.531731509e-9 7.812668571e-10 3.98332767e-10 2.030077406e-10 Precision last xi:18.342695839083955 Precision last zeta: 18.307512597769747 Discretization (channel 2) "xitable" (channel 2) 0.5441474364 0.4158983827 0.3221270801 0.2403544036 0.1749442503 0.1255746458 0.0894753116 0.06351260406 0.04499703958 0.03184851216 0.02253120312 0.0159358233 0.0112696924 0.007969357715 0.005635357363 0.003984859493 0.002817742569 0.001992452261 0.001408879286 0.0009962289038 0.0007044406702 0.0004981147612 0.0003522204911 0.0002490573791 0.0001761102917 0.0001245286518 0.00008805517928 0.00006226428209 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 2) 0.03145762548 -0.01123144411 -0.006516747789 -0.0046034452 -0.002854806563 -0.00162525128 -0.0008830167132 -0.0004680119953 -0.0002448111011 -0.0001271598519 -0.00006578615839 -0.00003394931882 -0.00001749153342 -9.001398644e-6 -4.627566494e-6 -2.377089712e-6 -1.220167578e-6 -6.258509522e-7 -3.208105562e-7 -1.643513825e-7 -8.414582125e-8 -4.305881794e-8 -2.202261898e-8 -1.125747162e-8 -5.751847909e-9 -2.937590776e-9 -1.499572338e-9 -7.651958729e-10 -3.902984935e-10 -1.989989119e-10 -1.014201366e-10 Precision last xi:18.34269583907286 Precision last zeta: 18.00612419135675 Discretization (channel 3) "xitable" (channel 3) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 3) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Precision last xi:MachinePrecision Precision last zeta: MachinePrecision Discretization (channel 4) "xitable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. "zetatable" (channel 4) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Precision last xi:MachinePrecision Precision last zeta: MachinePrecision Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 5}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005993237854", "0.09988729756", "thetaCh(3.)", "thetaCh(4.)"} theta0Ch={"0.0005993237853811049", "0.009988729756351747", "0.1*thetaCh(3.)", "0.1*thetaCh(4.)"} gammaPolCh={"0.013811976176923348", "0.056387156621565585", "0.1784124116152771*Sqrt(thetaCh(3.))", "0.1784124116152771*Sqrt(thetaCh(4.))"} checkdefinitions[] -> -0.5597065962944633 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2], hybV[2, 1]}, {coefzeta[4, 0], (coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2], hybV[1, 1]}, {hybV[2, 2], hybV[1, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2, 0}, {hybV[2, 1], hybV[1, 1], 0, epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2], hybV[1, 1], -hybV[2, 1], 0}, {hybV[1, 2], (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], 0, 0, -hybV[2, 1]}, {-hybV[2, 2], coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, 0, -hybV[1, 1]}, {hybV[1, 1], 0, 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0], hybV[2, 2]}, {-hybV[2, 1], 0, 0, coefzeta[4, 0], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 2]}, {0, -hybV[2, 1], -hybV[1, 1], hybV[2, 2], hybV[1, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={6, 6} det[vec]=-1. 1-abs=0. orthogonality check=2.581268532253489*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, 0, -hybV[1, 1], hybV[2, 1]}, {0, (2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[1, 2], -hybV[2, 2]}, {-hybV[1, 1], hybV[1, 2], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2, coefzeta[3, 0]}, {hybV[2, 1], -hybV[2, 2], coefzeta[4, 0], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24634587335467234, -0.222298186663835, -0.16157538045862443, -0.1375839320280575, -0.07584266457633546, -0.07218592295121722, -0.058738391466668545, -0.0157282974707535, 0.0157282974707535, 0.019385039095871748, 0.022185922951217213, 0.06519601694713226, 0.11386649918148235, 0.13438396624186424, 0.19948960088059514, 0.2200633062012478} Lowest energies (GS shifted):{0., 0.024047686690837344, 0.0847704928960479, 0.10876194132661485, 0.17050320877833688, 0.1741599504034551, 0.1876074818880038, 0.23061757588391885, 0.26207417082542583, 0.2657309124505441, 0.2685317963058895, 0.31154189030180457, 0.3602123725361547, 0.3807298395965366, 0.4458354742352675, 0.46640917955592015} Scale factor SCALE(Ninit):1.0201394465967895 Lowest energies (shifted and scaled):{0., 0.023572940710273507, 0.08309696598719359, 0.10661477868486254, 0.16713715889248262, 0.17072170964906516, 0.1839037618963437, 0.2260647567871871, 0.25690034014439084, 0.26048489090097343, 0.26323048010908534, 0.30539147499992875, 0.3531011115566917, 0.37321352572597877, 0.4370338542662826, 0.4572013964481746} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" s: n_d op.model..U1.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {1} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.009145`4.412728703308411} {ham, 0.202979`5.060026097733826} {maketable, 0.938638`6.424043125789076} {xi, 0.098267`5.443952691144279} {_, 0} data gammaPol=0.013811976176923348 "Success!"