NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.4426950408889634 faktor=0.9802581434685472 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QSZ PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, COEFCHANNELS="2 "V[1,1]="-0.07741600514901553209`18.888830756927376 "V[1,2]="0 "V[2,1]="0 "V[2,2]="-0.3160495175662720313`18.499755131735558 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5906288637704714128`18.77131466692628, 0.5603706212290712196`18.74847535828298, 0.5068303722097021735`18.704862632430512, 0.3768706032151149521`18.57619226278956, 0.258835337862823367`18.41302356871668, 0.1804448161204908474`18.256344410016453, 0.1273592030290158217`18.10503033273355, 0.09008934611506830281`18.954673434741395, 0.06372782089558824692`18.804329068500245, 0.04507291688462537749`18.65391566425927, 0.03187532634296533912`18.50345463981765, 0.02254068862044691576`18.352967179655607, 0.01593918073730921786`18.202465995202523, 0.01127088073911419394`18.051957854395006, 0.007969778756501575204`18.901446265415665, 0.005635506221643945581`18.750932933583915, 0.003984912437409698915`18.600418782854444, 0.002817761056980297007`18.449904162643218, 0.001992459052045069019`18.299389404771485, 0.00140888144849839192`18.148874450576294, 0.0009962299125007159986`18.998359577588065, 0.0007044407747059971319`18.847844486019415, 0.0004981150392048793981`18.697329654250133, 0.000352220341133111924`18.546814433365423, 0.0002490575695087961445`18.39629974561044, 0.0001761101096519996311`18.24578428748377, 0.0001245288292390403875`18.095269905086745, 0.00008805499265586586575`18.94475398519167, 0.00006226445874858230613`18.794240217222995, 0.0000440274341877870936`18.643723376566612, 0.00003113227350516634964`18.49321083718412} "zeta="{-0.06852185631394891452`18.835829119850747, 0.008402131168794466434`18.92438945718757, 0.008437907849412050812`18.92623477813162, 0.01900499416035763417`18.278867740493986, 0.01375824058127889972`18.13856289940115, 0.006921834305644262476`18.84022119897347, 0.003496455059703073957`18.543627950580436, 0.001812094999356208234`18.258180961891952, 0.0009412971877751519917`18.973726761189297, 0.0004878476198271267106`18.68828419044011, 0.0002522891971808624003`18.401898654777646, 0.0001302548283519373937`18.114793830917726, 0.00006716595665640327643`18.827149204861644, 0.00003459605211559094851`18.539026542658764, 0.00001780319686693297834`18.250497994275587, 9.154563720140378863`18.961637651920032*^-6, 4.703627130888211564`18.67243288674664*^-6, 2.414882978434888988`18.382896090345774*^-6, 1.238996471335687972`18.093070069506314*^-6, 6.352557841736149583`18.802948628107686*^-7, 3.255021255053679958`18.51255382882507*^-7, 1.666986257209423974`18.221932019478444*^-7, 8.532216977540370424`18.93106189119257*^-8, 4.364627726673245997`18.639947207229145*^-8, 2.231601273857980488`18.348616600645364*^-8, 1.140429345899722779`18.057068384188405*^-8, 5.825138428948928731`18.765306250421546*^-9, 2.974268574968405287`18.473380182531702*^-9, 1.517940550123208141`18.181254762824924*^-9, 7.743770085023972413`18.888952450151617*^-10, 3.948788978454524772`18.59646392585063*^-10} "nrch="2 "xi="{0.5936055281210215195`18.773497936781208, 0.5599810589685636497`18.748173337498073, 0.5066206581149795829`18.70468289473685, 0.3764424593108794959`18.575698602014672, 0.2585926697417124109`18.412616209887588, 0.1803507754018745246`18.25611801386831, 0.1273235659273680154`18.104908793323865, 0.09007575457180767853`18.95460790892949, 0.06372266427158922164`18.80429392554498, 0.04507097194660086847`18.653896923646617, 0.0318745962024934229`18.503444691696455, 0.02254041545712747591`18.35296191654927, 0.01593907885696020307`18.202463219262185, 0.01127084286022318402`18.05195639482664, 0.007969764698750258017`18.90144549937066, 0.005635501010682034476`18.750932532006317, 0.003984910509322240127`18.60041857272236, 0.002817760344788183997`18.44990405287481, 0.00199245878941376256`18.299389347525974, 0.001408881351830227778`18.14887442077787, 0.0009962298769563967746`18.998359562092944, 0.0007044407616446054284`18.84784447796694, 0.0004981150344108429195`18.69732965007033, 0.0003522203393754953023`18.54681443119825, 0.0002490575688651372444`18.396299744488058, 0.0001761101094165964899`18.245784286903255, 0.0001245288291530076169`18.095269904786704, 0.00008805499262443359793`18.944753985036645, 0.00006226445873710827585`18.794240217142963, 0.00004402743418360215453`18.643723376525333, 0.00003113227350364123632`18.493210837162845} "zeta="{0.03426072315796555717`18.534796525593865, -0.004503279430684823531`18.653528895983438, -0.004135764930807296798`18.61655584629612, -0.00941650091783680955`18.97388955307094, -0.006815993551923955548`18.833529170906946, -0.00343695581807176246`18.536173949335083, -0.001740358948560854005`18.240638830640123, -0.0009033135694818400377`18.95583853420765, -0.000469621497901965407`18.67174796942886, -0.0002435081439513511921`18.386513490454096, -0.0001259641644970673098`18.100247010397332, -0.00006504455957542832104`18.813210977374474, -0.00003354352801052630024`18.525608738500388, -0.00001727883690312868653`18.237514505298336, -8.892148818627174336`18.94900672242189*^-6, -4.572595932323176233`18.66016282567203*^-6, -2.349480991093797345`18.370971935634152*^-6, -1.206277975858803144`18.08144739857586*^-6, -6.189172177219720288`18.791632564543896*^-7, -3.173375789429131166`18.501521504061277*^-7, -1.626059582164520436`18.21113645499187*^-7, -8.327677421003474903`18.920523894097165*^-8, -4.26248192360886872`18.629662550242532*^-8, -2.180500671683421356`18.338556224789937*^-8, -1.114894069588930318`18.0472336053407*^-8, -5.697613930989670799`18.755693018206152*^-9, -2.910302846098721185`18.46393818401893*^-9, -1.486001099066875931`18.172019130634858*^-9, -7.584036907965321075`18.87990043784355*^-10, -3.869052067498630552`18.587604574248303*^-10, -1.972978042360530019`18.295122251935048*^-10} BAND="manual_V" thetaCh={"0.005993237853", "0.09988729755"} Discretization (channel 1) "xitable" (channel 1) 0.5906288638 0.5603706212 0.5068303722 0.3768706032 0.2588353379 0.1804448161 0.127359203 0.09008934612 0.0637278209 0.04507291688 0.03187532634 0.02254068862 0.01593918074 0.01127088074 0.007969778757 0.005635506222 0.003984912437 0.002817761057 0.001992459052 0.001408881448 0.0009962299125 0.0007044407747 0.0004981150392 0.0003522203411 0.0002490575695 0.0001761101097 0.0001245288292 0.00008805499266 0.00006226445875 0.00004402743419 0.00003113227351 "zetatable" (channel 1) -0.06852185631 0.008402131169 0.008437907849 0.01900499416 0.01375824058 0.006921834306 0.00349645506 0.001812094999 0.0009412971878 0.0004878476198 0.0002522891972 0.0001302548284 0.00006716595666 0.00003459605212 0.00001780319687 9.15456372e-6 4.703627131e-6 2.414882978e-6 1.238996471e-6 6.352557842e-7 3.255021255e-7 1.666986257e-7 8.532216978e-8 4.364627727e-8 2.231601274e-8 1.140429346e-8 5.825138429e-9 2.974268575e-9 1.51794055e-9 7.743770085e-10 3.948788978e-10 Precision last xi:18.49321083718412 Precision last zeta: 18.59646392585063 Discretization (channel 2) "xitable" (channel 2) 0.5936055281 0.559981059 0.5066206581 0.3764424593 0.2585926697 0.1803507754 0.1273235659 0.09007575457 0.06372266427 0.04507097195 0.0318745962 0.02254041546 0.01593907886 0.01127084286 0.007969764699 0.005635501011 0.003984910509 0.002817760345 0.001992458789 0.001408881352 0.000996229877 0.0007044407616 0.0004981150344 0.0003522203394 0.0002490575689 0.0001761101094 0.0001245288292 0.00008805499262 0.00006226445874 0.00004402743418 0.0000311322735 "zetatable" (channel 2) 0.03426072316 -0.004503279431 -0.004135764931 -0.009416500918 -0.006815993552 -0.003436955818 -0.001740358949 -0.0009033135695 -0.0004696214979 -0.000243508144 -0.0001259641645 -0.00006504455958 -0.00003354352801 -0.0000172788369 -8.892148819e-6 -4.572595932e-6 -2.349480991e-6 -1.206277976e-6 -6.189172177e-7 -3.173375789e-7 -1.626059582e-7 -8.327677421e-8 -4.262481924e-8 -2.180500672e-8 -1.11489407e-8 -5.697613931e-9 -2.910302846e-9 -1.486001099e-9 -7.584036908e-10 -3.869052067e-10 -1.972978042e-10 Precision last xi:18.493210837162845 Precision last zeta: 18.295122251935048 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QSZ}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 9}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005993237853", "0.09988729755"} theta0Ch={"0.0005993237853232399", "0.00998872975538733"} gammaPolCh={"0.013811976176256572", "0.056387156618843484"} checkdefinitions[] -> -0.5611088653802683 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QSZ_-2.1 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 0}] Generating matrix: ham.model..QSZ_-1.0 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[2, 2]}, {hybV[2, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.model..QSZ_-1.2 hamil={{(coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 1]}, {hybV[1, 1], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, -1}] Generating matrix: ham.model..QSZ_0.-1 hamil={{(2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QSZ_0.1 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, -hybV[2, 2], hybV[1, 1], 0}, {-hybV[2, 2], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, -hybV[1, 1]}, {hybV[1, 1], 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[2, 2]}, {0, -hybV[1, 1], hybV[2, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.579669976578771*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QSZ_0.3 hamil={{(2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 0}] Generating matrix: ham.model..QSZ_1.0 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -hybV[1, 1]}, {-hybV[1, 1], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QSZ_1.2 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -hybV[2, 2]}, {-hybV[2, 2], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={2, 2} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{2, 1}] Generating matrix: ham.model..QSZ_2.1 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24825769956362725, -0.22513288381125313, -0.15899601539674107, -0.13592758428128632, -0.07842836208297674, -0.07639128973595724, -0.05935628750531072, -0.01713056657799168, 0.01713056657799168, 0.01916763892501118, 0.026391289735957234, 0.06861701066327627, 0.11240154981573654, 0.13161102749730424, 0.20251787171068997, 0.22178373402917687} Lowest energies (GS shifted):{0., 0.023124815752374128, 0.08926168416688618, 0.11233011528234094, 0.16982933748065052, 0.17186640982767, 0.18890141205831654, 0.23112713298563559, 0.2653882661416189, 0.2674253384886384, 0.2746489892995845, 0.3168747102269035, 0.3606592493793638, 0.3798687270609315, 0.4507755712743172, 0.47004143359280415} Scale factor SCALE(Ninit):1.4426950408889634 Lowest energies (shifted and scaled):{0., 0.016028900839726336, 0.061871484712309466, 0.07786130269992825, 0.11771672645107635, 0.11912871740500955, 0.13093648117201456, 0.16020512057989683, 0.18395312842975556, 0.18536511938368874, 0.19037217257664557, 0.2196408119845278, 0.2499899418501722, 0.26330493714518005, 0.31245381629409164, 0.32580789444120695} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QSZ.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} s: SZd op.model..QSZ.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004672`4.1210478276003135} {ham, 0.039612`4.095129254434585} {maketable, 0.486601`6.138717990598041} {xi, 0.043002`5.085033648349155} {_, 0} data gammaPol=0.013811976176256572 "Success!"