NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + hybV[2, 2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + hybV[1, 1]*nc[d[0, 1], f[1, 0, 1]] + hybV[2, 2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + hybV[1, 1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0201394465967895 faktor=1.3862943611198906 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QSZ PREC=30 DISCNMAX=30 mMAX=80 "band=manual_V, importing V, COEFCHANNELS="2 "V[1,1]="-0.07741600515275280647`18.888830756948344 "V[1,2]="0 "V[2,1]="0 "V[2,2]="-0.3160495175815293822`18.499755131756523 Diagonalisation. Loading discretization data from files. "nrch="1 "xi="{0.5414205534174033607`18.73353473844286, 0.4165168229929106514`18.61963254712442, 0.3224288405850820882`18.508433881603146, 0.2405229899714615982`18.381156593976204, 0.1750237783476377151`18.24309705499285, 0.125608319250720385`18.099018404409385, 0.08948875527342765868`18.951768467388447, 0.0635178025952015668`18.80289546521744, 0.04499901665233966425`18.653203023394703, 0.03184925738488307567`18.50309931053613, 0.02253148232878564305`18.352789764561606, 0.01593592746544430366`18.20237734433333, 0.0112697311344659018`18.051913555069117, 0.007969372080228362756`18.90142410397642, 0.005635362680229734182`18.75092187157181, 0.003984861459585824391`18.600413227016123, 0.002817743294671098443`18.449901424974186, 0.001992452528118196769`18.299387982754766, 0.001408879384878022065`18.148873814454923, 0.0009962289399844535993`18.998359153631057, 0.0007044406835014242665`18.84784442979092, 0.0004981147660772492934`18.697329416116677, 0.0003522204929041246194`18.546814620501973, 0.0002490573797256550106`18.3962994146757, 0.0001761102919216408244`18.245784736967668, 0.0001245286518620077835`18.09526928648363, 0.00008805517931215591301`18.944754905794902, 0.00006226428210041178187`18.794238985100595, 0.00004402762087179630084`18.64372521804715, 0.00003113209720851036497`18.49320837784296, 0.00002201384169566394274`18.342695839083955} "zeta="{-0.06291422042197067355`18.798748819575312, 0.02206118955541452181`18.343628926210428, 0.01321896416460952885`18.121197425254074, 0.009291188863137176887`18.96807128812345, 0.005747080602280654933`18.759447288116863, 0.003265280351048156435`18.513920474948378, 0.001771688419690743308`18.248387346497317, 0.0009382570069015130649`18.972321816407582, 0.0004905570532026821409`18.690689524356486, 0.0002547349321113008547`18.40608850437836, 0.0001317653690442566303`18.119801282722015, 0.00006799115688012121882`18.832452430825214, 0.00003502823574180706089`18.544418263869414, 0.00001802508694544188183`18.25587736825053, 9.266198576100054312`18.966901602966253*^-6, 4.759691060616355071`18.677578764690285*^-6, 2.443085340860337431`18.387938637836058*^-6, 1.253075498917657677`18.09797723841277*^-6, 6.423075116928176916`18.807743001054526*^-7, 3.290458596457531551`18.51725643048227*^-7, 1.684631618697747424`18.226504947665678*^-7, 8.620338832993492264`18.935524336637627*^-8, 4.408811218494099512`18.644321503108117*^-8, 2.253637989736544739`18.35288415497252*^-8, 1.151441397805080482`18.061241839601582*^-8, 5.880540623677724737`18.769417254492307*^-9, 3.001824186966434768`18.47738525257538*^-9, 1.531731508280846492`18.18518264604655*^-9, 7.812668570575360682`18.892799401037685*^-10, 3.983327669976103887`18.600246033100092*^-10, 2.030077406067208165`18.30751259770974*^-10} "nrch="2 "xi="{0.5441474364290095345`18.735716587477977, 0.4158983826894648295`18.618987231520485, 0.3221270800530505185`18.508027235913314, 0.2403544035967567771`18.380852083361912, 0.1749442502964376756`18.242899673566207, 0.1255746457768444624`18.09890196176785, 0.08947531159772098563`18.95170321949496, 0.0635126040634993172`18.802859919497436, 0.04499703957807379973`18.653183941837575, 0.03184851216043035893`18.50308914858321, 0.022531203124512518`18.352784382863913, 0.01593582329823944876`18.202374505503258, 0.0112696923963203164`18.0519120622392, 0.007969357715312996165`18.901423321153253, 0.005635357362683683126`18.750921461769966, 0.003984859493431933651`18.60041301273264, 0.002817742568845101048`18.449901313103716, 0.001992452260591967301`18.299387924442122, 0.001408879286422986274`18.148873784105643, 0.0009962289038089214115`18.99835913786075, 0.0007044406702221595344`18.847844421604126, 0.0004981147612057368118`18.697329411869323, 0.0003522204911188211605`18.54681461830066, 0.0002490573790720685592`18.396299413536006, 0.0001761102916826227634`18.24578473637824, 0.0001245286517746977957`18.095269286179136, 0.00008805517928028333715`18.944754905637705, 0.00006226428208878024412`18.794238985019465, 0.00004402762086755496971`18.643725218005315, 0.00003113209720696512615`18.493208377821404, 0.00002201384169510143494`18.34269583907286} "zeta="{0.03145762548046371343`18.497725937624477, -0.01123144410605263904`18.050435600158927, -0.006516747788940902009`18.81403091326339, -0.004603445200205129664`18.663082977640613, -0.002854806562905144035`18.455576686484154, -0.001625251279637838142`18.21092051665241, -0.0008830167131988399688`18.945968923714986, -0.0004680119952766227838`18.67025698430422, -0.0002448111011111532478`18.38883110727257, -0.0001271598518550593447`18.104350013277276, -0.00006578615838509657926`18.8181345262989, -0.00003394931881791991623`18.530831064725906, -0.00001749153341761242741`18.24282788412795, -9.001398643898274381`18.95430999567641*^-6, -4.627566494349347905`18.665352667926623*^-6, -2.377089711986065488`18.37604557242456*^-6, -1.220167577688426873`18.086419480730058*^-6, -6.258509521556673659`18.796470917294137*^-7, -3.208105561913170858`18.506248650198824*^-7, -1.643513825051862751`18.215773361668926*^-7, -8.414582124738565066`18.92503255341626*^-8, -4.305881793582165381`18.634062103262753*^-8, -2.202261898090608641`18.342868965013636*^-8, -1.125747161754716193`18.05144086068865*^-8, -5.75184790853256685`18.759807393828524*^-9, -2.937590775368188663`18.46799129575039*^-9, -1.49957233862223898`18.175967420750233*^-9, -7.651958725429880304`18.883772618782547*^-10, -3.902984934207766073`18.5913968748777*^-10, -1.989989119061389659`18.298850701764223*^-10, -1.014201365791622655`18.006124191062344*^-10} BAND="manual_V" thetaCh={"0.005993237854", "0.09988729756"} Discretization (channel 1) "xitable" (channel 1) 0.5414205534 0.416516823 0.3224288406 0.24052299 0.1750237783 0.1256083193 0.08948875527 0.0635178026 0.04499901665 0.03184925738 0.02253148233 0.01593592747 0.01126973113 0.00796937208 0.00563536268 0.00398486146 0.002817743295 0.001992452528 0.001408879385 0.00099622894 0.0007044406835 0.0004981147661 0.0003522204929 0.0002490573797 0.0001761102919 0.0001245286519 0.00008805517931 0.0000622642821 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 1) -0.06291422042 0.02206118956 0.01321896416 0.009291188863 0.005747080602 0.003265280351 0.00177168842 0.0009382570069 0.0004905570532 0.0002547349321 0.000131765369 0.00006799115688 0.00003502823574 0.00001802508695 9.266198576e-6 4.759691061e-6 2.443085341e-6 1.253075499e-6 6.423075117e-7 3.290458596e-7 1.684631619e-7 8.620338833e-8 4.408811218e-8 2.25363799e-8 1.151441398e-8 5.880540624e-9 3.001824187e-9 1.531731508e-9 7.812668571e-10 3.98332767e-10 2.030077406e-10 Precision last xi:18.342695839083955 Precision last zeta: 18.30751259770974 Discretization (channel 2) "xitable" (channel 2) 0.5441474364 0.4158983827 0.3221270801 0.2403544036 0.1749442503 0.1255746458 0.0894753116 0.06351260406 0.04499703958 0.03184851216 0.02253120312 0.0159358233 0.0112696924 0.007969357715 0.005635357363 0.003984859493 0.002817742569 0.001992452261 0.001408879286 0.0009962289038 0.0007044406702 0.0004981147612 0.0003522204911 0.0002490573791 0.0001761102917 0.0001245286518 0.00008805517928 0.00006226428209 0.00004402762087 0.00003113209721 0.0000220138417 "zetatable" (channel 2) 0.03145762548 -0.01123144411 -0.006516747789 -0.0046034452 -0.002854806563 -0.00162525128 -0.0008830167132 -0.0004680119953 -0.0002448111011 -0.0001271598519 -0.00006578615839 -0.00003394931882 -0.00001749153342 -9.001398644e-6 -4.627566494e-6 -2.377089712e-6 -1.220167578e-6 -6.258509522e-7 -3.208105562e-7 -1.643513825e-7 -8.414582125e-8 -4.305881794e-8 -2.202261898e-8 -1.125747162e-8 -5.751847909e-9 -2.937590775e-9 -1.499572339e-9 -7.651958725e-10 -3.902984934e-10 -1.989989119e-10 -1.014201366e-10 Precision last xi:18.34269583907286 Precision last zeta: 18.006124191062344 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QSZ}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 9}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005993237854", "0.09988729756"} theta0Ch={"0.0005993237853811049", "0.009988729756351747"} gammaPolCh={"0.013811976176923348", "0.056387156621565585"} checkdefinitions[] -> -0.5597065962944633 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QSZ_-2.1 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 0}] Generating matrix: ham.model..QSZ_-1.0 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[2, 2]}, {hybV[2, 2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{-1, 2}] Generating matrix: ham.model..QSZ_-1.2 hamil={{(coefzeta[1, 0] - coefzeta[2, 0])/2, hybV[1, 1]}, {hybV[1, 1], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, -1}] Generating matrix: ham.model..QSZ_0.-1 hamil={{(2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QSZ_0.1 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, -hybV[2, 2], hybV[1, 1], 0}, {-hybV[2, 2], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, -hybV[1, 1]}, {hybV[1, 1], 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, hybV[2, 2]}, {0, -hybV[1, 1], hybV[2, 2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=4.6351811278100286*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QSZ_0.3 hamil={{(2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 0}] Generating matrix: ham.model..QSZ_1.0 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -hybV[1, 1]}, {-hybV[1, 1], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={2, 2} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{1, 2}] Generating matrix: ham.model..QSZ_1.2 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -hybV[2, 2]}, {-hybV[2, 2], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={2, 2} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=0. diagvc[{2, 1}] Generating matrix: ham.model..QSZ_2.1 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24634587335467226, -0.222298186663835, -0.16157538045862446, -0.13758393202805752, -0.07584266457633546, -0.0721859229512172, -0.05873839146666851, -0.01572829747075348, 0.01572829747075348, 0.019385039095871737, 0.022185922951217192, 0.06519601694713224, 0.11386649918148231, 0.13438396624186427, 0.1994896008805951, 0.2200633062012476} Lowest energies (GS shifted):{0., 0.02404768669083726, 0.0847704928960478, 0.10876194132661474, 0.1705032087783368, 0.17415995040345505, 0.18760748188800375, 0.2306175758839188, 0.2620741708254257, 0.265730912450544, 0.26853179630588947, 0.3115418903018045, 0.36021237253615457, 0.3807298395965365, 0.44583547423526737, 0.4664091795559199} Scale factor SCALE(Ninit):1.0201394465967895 Lowest energies (shifted and scaled):{0., 0.023572940710273424, 0.08309696598719349, 0.10661477868486242, 0.16713715889248254, 0.1707217096490651, 0.18390376189634366, 0.22606475678718704, 0.2569003401443907, 0.2604848909009733, 0.2632304801090853, 0.3053914749999287, 0.3531011115566916, 0.37321352572597866, 0.4370338542662825, 0.4572013964481743} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QSZ.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} s: SZd op.model..QSZ.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004572`4.111651215219217} {ham, 0.042747`4.12820812524568} {maketable, 0.51461`6.163023214745782} {xi, 0.047989`5.132686693647048} {_, 0} data gammaPol=0.013811976176923348 "Success!"