NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.715663207404297 faktor=0.8242955588659627 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QSZ PREC=1000 DISCNMAX=30 mMAX=80 rho[0]=0.003 pos=0.0002969999999996994 neg=0.0003029999999996994 theta=0.005996580826161658483524788747837360059265188168972919766838070480100395158446614731343923686893948999331094679028785539332991892383277544678079112445102930086083189787038311832988686583210214119366950590606341841984471244909450065\ 94479069625040763162336838811478384119899324172814744860561752267997362490013498345880905380134243093801240547117581153158137493202628144739104727027982771468021828709871494165627588919402444401848239759011357053402992283166204584107601740\ 01405382725431224457405611694249706237139273349020115064591253999056554034872799086817220705155909991026496836726961451749443376510770744687976512438962121047591490072781426810195553144841147498116386985778670041891230137747337533956173026\ 90175418953243181759354219845228635609655241119831127406386963652153728186224378228341709305329094029938251337884976371061396688839658537255588347654465951355036729792962412433095538445071841843993536535247154097691778114251890371226462163\ 1512394428157232442572888456057648630046438218170062823903782486348415347`1000. {1, 0.8068953400414524} {2, 0.9972584910586777} {3, 0.9987175721869757} {4, 0.9993788219937514} {5, 0.9996941911674655} {6, 0.9998482634942636} {7, 0.9999244203652127} {8, 0.9999622818098464} {9, 0.9999811585208577} {10, 0.9999905831775983} {11, 0.9999952916063973} {12, 0.9999976438858097} {13, 0.9999988176202935} {14, 0.9999994000431217} {15, 0.9999996824571924} {16, 0.9999998060924102} {17, 0.9999998327720994} {18, 0.9999997758375346} {19, 0.9999996068217797} {20, 0.9999992520067679} {21, 0.9999988250708488} {22, 0.9999983981349297} {23, 0.9999979711990107} {24, 0.9999975442630916} {25, 0.9999971173271724} {26, 0.9999966903912534} {27, 0.9999962634553343} {28, 0.9999958365194153} {29, 0.999995516317476} {30, 0.999995516317476} {1, 0.8071970270876005} {2, 1.0021484553575772} {3, 1.0011357566732124} {4, 1.00058460843701} {5, 1.0002966725105868} {6, 1.0001494527073507} {7, 1.0000750085087147} {8, 1.000037575009288} {9, 1.000018804882199} {10, 1.0000094060694098} {11, 1.0000047024976986} {12, 1.0000023482247693} {13, 1.000001167576334} {14, 1.0000005705938688} {15, 1.0000002588775954} {16, 1.0000000765922292} {17, 0.9999999326008137} {18, 0.9999997549090707} {19, 0.9999994546714767} {20, 0.9999988975836258} {21, 0.9999982363771052} {22, 0.9999975751705844} {23, 0.9999969139640639} {24, 0.9999962527575431} {25, 0.9999955915510226} {26, 0.9999949303445018} {27, 0.9999942691379811} {28, 0.9999936079314604} {29, 0.9999931120265699} {30, 0.9999931120265699} rho[0]=0.05 pos=0.005025000000002506 neg=0.004975000000002506 theta=0.099943013769376009564392321314396855001603840092243565055678932309906496546240321017207284452009030299862901699120858121006639853268322856514470540617120735814336414505990260549281115012384575562804025140378456812858362088332599777\ 86079066242164177201254415655017031932684715460816637390276173558407130224179774150479621648711718864515369546150764289283908783441077983369820817332751152064897709849540998129554874566204839116534257370931679738046226840225165755729202214\ 44854940311542746903180990228820766562240291575206609972772050558093908826609235823333084362019338490066752817580294931809202333010283201338847988291789115177439105045955548799501413949775959605036883393046633049386362174414761502961518187\ 83817633134516532696930816730053287523828021655697477012586214142117934812382671689011657003388458545933093917447750331677111028404031843091644936680024862766309182239913591797127380864988377209281879179470031920920319898014722958667851234\ 8049892353916080608419036603826954708706094209408192065826436190107001083`1000. {1, 0.8071417835919039} {2, 1.0011357566775478} {3, 1.0005846084459675} {4, 1.0002966725287485} {5, 1.0001494527439672} {6, 1.0000750085822414} {7, 1.0000375751566177} {8, 1.0000188051771486} {9, 1.000009406659584} {10, 1.0000047036783104} {11, 1.0000023505862814} {12, 1.0000011722996225} {13, 1.0000005800407303} {14, 1.0000002777715868} {15, 1.0000001143804962} {16, 1.0000000081776232} {17, 0.9999999060629672} {18, 0.9999997569795569} {19, 0.9999994863857733} {20, 0.9999989737221515} {21, 0.9999983637519123} {22, 0.9999977537816731} {23, 0.999997143811434} {24, 0.9999965338411948} {25, 0.9999959238709556} {26, 0.9999953139007164} {27, 0.9999947039304772} {28, 0.999994093960238} {29, 0.9999936364825588} {30, 0.9999936364825588} {1, 0.8069953178379362} {2, 0.998717572189623} {3, 0.9993788219988623} {4, 0.9996941911775021} {5, 0.9998482635142026} {6, 0.9999244204049477} {7, 0.9999622818891681} {8, 0.999981158679353} {9, 0.9999905834944359} {10, 0.9999952922399155} {11, 0.9999976451527017} {12, 0.9999988201539372} {13, 0.9999994051102443} {14, 0.999999692591288} {15, 0.9999998263604483} {16, 0.9999998733080162} {17, 0.9999998569092218} {18, 0.9999997689650234} {19, 0.9999995655034044} {20, 0.9999991569324019} {21, 0.9999986676249483} {22, 0.9999981783174946} {23, 0.9999976890100409} {24, 0.9999971997025873} {25, 0.9999967103951336} {26, 0.9999962210876799} {27, 0.9999957317802263} {28, 0.9999952424727726} {29, 0.9999948754921825} {30, 0.9999948754921825} Diagonalisation. Discretization checksum [-1] (channel 1): 6.959696794856215964330902467039898`10.*^-25 Discretization checksum [-1] (channel 2): 6.959698885011081372934743675226203`10.*^-25 BAND="asymode" thetaCh={"0.005996580826", "0.09994301377"} Discretization (channel 1) "xitable" (channel 1) 0.569737209 0.5417779098 0.5906662645 0.516654673 0.3414089874 0.2217216246 0.1529945309 0.1075832006 0.07593435955 0.05365230743 0.03792429034 0.02681185535 0.01895721377 0.01340419902 0.009477996067 0.006701882825 0.004738921012 0.003350914008 0.00236945075 0.00167545353 0.001184724137 0.0008377263243 0.0005923619105 0.0004188631058 0.0002961809342 0.0002094315454 0.0001480904635 0.0001047157713 0.00007404523027 0.00005235788508 0.00003702261396 "zetatable" (channel 1) -0.06609675735 0.008607350421 -0.008706378093 0.01259166655 0.02589003451 0.01274279878 0.005334335948 0.002592569072 0.00132506287 0.0006828563531 0.000352325423 0.0001817475529 0.00009369682378 0.00004826746911 0.00002484519817 0.00001277883773 6.567672062e-6 3.372998112e-6 1.731089569e-6 8.878426159e-7 4.550709871e-7 2.331106119e-7 1.193430199e-7 6.106548855e-8 3.122984411e-8 1.596358527e-8 8.156228578e-9 4.16544915e-9 2.126490193e-9 1.085252873e-9 5.537169945e-10 Precision last xi:969.7968296896753 Precision last zeta: 965.1418328818318 Discretization (channel 2) "xitable" (channel 2) 0.57260283 0.5413437246 0.5909638157 0.5163145852 0.3408501856 0.2215216227 0.152931143 0.1075603822 0.0759258307 0.0536491072 0.03792309118 0.02681140699 0.0189570465 0.01340413676 0.009477972935 0.006701874247 0.004738917837 0.003350912835 0.002369450317 0.001675453371 0.001184724078 0.0008377263028 0.0005923619025 0.000418863103 0.0002961809331 0.000209431545 0.0001480904633 0.0001047157713 0.00007404523019 0.00005235788512 0.0000370226139 "zetatable" (channel 2) 0.03304853179 -0.004590071536 0.004371524191 -0.00626371706 -0.01281806438 -0.006308952361 -0.002650848961 -0.001291548796 -0.0006609130419 -0.000340813635 -0.0001759083285 -0.00009076099614 -0.00004679593529 -0.00002410855468 -0.00001241029427 -6.383342985e-6 -3.280818566e-6 -1.684995786e-6 -8.647946053e-7 -4.43546607e-7 -2.273482487e-7 -1.164617139e-7 -5.962472459e-8 -3.050935697e-8 -1.560323241e-8 -7.975951489e-9 -4.075197211e-9 -2.081269652e-9 -1.062521025e-9 -5.422681086e-10 -2.766825779e-10 Precision last xi:969.8322245342351 Precision last zeta: 964.8759193893137 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QSZ}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 9}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005996580826", "0.09994301377"} theta0Ch={"0.005996580826161659", "0.099943013769376"} gammaPolCh={"0.043689483405819976", "0.17836156911676657"} checkdefinitions[] -> 0.32757799226279904 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QSZ_-2.1 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 0}] Generating matrix: ham.model..QSZ_-1.0 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, gammaPolCh[2]}, {gammaPolCh[2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=-0.9999999999999998 1-abs=2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{-1, 2}] Generating matrix: ham.model..QSZ_-1.2 hamil={{(coefzeta[1, 0] - coefzeta[2, 0])/2, gammaPolCh[1]}, {gammaPolCh[1], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, -1}] Generating matrix: ham.model..QSZ_0.-1 hamil={{(2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QSZ_0.1 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[2], gammaPolCh[1], 0}, {-gammaPolCh[2], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, -gammaPolCh[1]}, {gammaPolCh[1], 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, gammaPolCh[2]}, {0, -gammaPolCh[1], gammaPolCh[2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=0.9999999999999998 1-abs=2.220446049250313*^-16 orthogonality check=1.5265566588595902*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QSZ_0.3 hamil={{(2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 0}] Generating matrix: ham.model..QSZ_1.0 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[1]}, {-gammaPolCh[1], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={2, 2} det[vec]=0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QSZ_1.2 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[2]}, {-gammaPolCh[2], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=0. diagvc[{2, 1}] Generating matrix: ham.model..QSZ_2.1 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24747680902503963, -0.2239553405751325, -0.16015927846173414, -0.1366941136541837, -0.07730476740917783, -0.07457264457127491, -0.0590901204240017, -0.01652411278237404, 0.01652411278237404, 0.01925623562027695, 0.024572644571274907, 0.06713865221290256, 0.1130840100477314, 0.13285858322148356, 0.2012560358153831, 0.2210869126314918} Lowest energies (GS shifted):{0., 0.02352146844990713, 0.08731753056330549, 0.11078269537085592, 0.1701720416158618, 0.17290416445376472, 0.18838668860103794, 0.2309526962426656, 0.2640009218074137, 0.26673304464531655, 0.27204945359631455, 0.3146154612379422, 0.36056081907277104, 0.3803353922465232, 0.44873284484042275, 0.46856372165653143} Scale factor SCALE(Ninit):1.715663207404297 Lowest energies (shifted and scaled):{0., 0.013709840222950168, 0.050894330650951045, 0.06457135345256017, 0.09918732352681424, 0.10077978224838142, 0.10980400336617145, 0.1346142385323307, 0.15387689184454353, 0.1554693505661107, 0.15856809915968895, 0.18337833432584819, 0.21015827437267218, 0.22168418055776196, 0.26155066035328145, 0.2731093839597122} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QSZ.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} s: SZd op.model..QSZ.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.005444`4.187463110027272} {ham, 0.0401839999999999999`4.101355649208142} {maketable, 0.520157`6.167679440866414} {xi, 0.572561`6.209366756214681} {_, 0} data gammaPol=0.043689483405819976 "Success!"