NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.4426950408889634 faktor=0.9802581434685472 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QSZ PREC=1000 DISCNMAX=30 mMAX=80 rho[0]=0.003 pos=0.0002969999999996994 neg=0.0003029999999996994 theta=0.005996580826161658483524788747837360059265188168972919766838070480100395158446614731343923686893948999331094679028785539332991892383277544678079112445102930086083189787038311832988686583210214119366950590606341841984471244909450065\ 94479069625040763162336838811478384119899324172814744860561752267997362490013498345880905380134243093801240547117581153158137493202628144739104727027982771468021828709871494165627588919402444401848239759011357053402992283166204584107601740\ 01405382725431224457405611694249706237139273349020115064591253999056554034872799086817220705155909991026496836726961451749443376510770744687976512438962121047591490072781426810195553144841147498116386985778670041891230137747337533956173026\ 90175418953243181759354219845228635609655241119831127406386963652153728186224378228341709305329094029938251337884976371061396688839658537255588347654465951355036729792962412433095538445071841843993536535247154097691778114251890371226462163\ 1512394428157232442572888456057648630046438218170062823903782486348415347`1000. {1, 0.9029186982115621} {2, 0.997744088931949} {3, 0.9989325642573896} {4, 0.9994802386398539} {5, 0.9997434747154434} {6, 0.9998725601913205} {7, 0.999936483778883} {8, 0.9999682924257617} {9, 0.9999841585311663} {10, 0.9999920817700017} {11, 0.9999960403679433} {12, 0.9999980177693827} {13, 0.9999990037106412} {14, 0.9999994914211463} {15, 0.9999997248208322} {16, 0.9999998206257219} {17, 0.9999998267422961} {18, 0.9999997462298541} {19, 0.9999995388324123} {20, 0.9999991452727882} {21, 0.9999987183368692} {22, 0.9999982914009502} {23, 0.999997864465031} {24, 0.999997437529112} {25, 0.999997010593193} {26, 0.9999965836572738} {27, 0.9999961567213548} {28, 0.9999957297854358} {29, 0.9999955163174762} {30, 0.9999955163174762} {1, 0.904849982674388} {2, 1.001838328714635} {3, 1.0009638322618073} {4, 1.0004939095189964} {5, 1.0002500653240098} {6, 1.0001258248905527} {7, 1.000063112265239} {8, 1.0000316061093029} {9, 1.0000158151490952} {10, 1.0000079097428367} {11, 1.0000039536956766} {12, 1.0000019731172038} {13, 1.0000009787522428} {14, 1.0000004736769263} {15, 1.0000002054182442} {16, 1.0000000398630307} {17, 0.999999894237731} {18, 0.9999996957306998} {19, 0.9999993450886742} {20, 0.999998732281996} {21, 0.9999980710754751} {22, 0.9999974098689545} {23, 0.9999967486624339} {24, 0.9999960874559131} {25, 0.9999954262493925} {26, 0.9999947650428719} {27, 0.999994103836351} {28, 0.9999934426298305} {29, 0.9999931120265702} {30, 0.9999931120265702} rho[0]=0.05 pos=0.005025000000002506 neg=0.004975000000002506 theta=0.099943013769376009564392321314396855001603840092243565055678932309906496546240321017207284452009030299862901699120858121006639853268322856514470540617120735814336414505990260549281115012384575562804025140378456812858362088332599777\ 86079066242164177201254415655017031932684715460816637390276173558407130224179774150479621648711718864515369546150764289283908783441077983369820817332751152064897709849540998129554874566204839116534257370931679738046226840225165755729202214\ 44854940311542746903180990228820766562240291575206609972772050558093908826609235823333084362019338490066752817580294931809202333010283201338847988291789115177439105045955548799501413949775959605036883393046633049386362174414761502961518187\ 83817633134516532696930816730053287523828021655697477012586214142117934812382671689011657003388458545933093917447750331677111028404031843091644936680024862766309182239913591797127380864988377209281879179470031920920319898014722958667851234\ 8049892353916080608419036603826954708706094209408192065826436190107001083`1000. {1, 0.9044894733003968} {2, 1.0009638322670265} {3, 1.0004939095296819} {4, 1.000250065345672} {5, 1.0001258249341538} {6, 1.000063112352725} {7, 1.0000316062845631} {8, 1.0000158154999015} {9, 1.0000079104447268} {10, 1.0000039550997202} {11, 1.0000019759255765} {12, 1.0000009843692632} {13, 1.0000004849112436} {14, 1.000000227887166} {15, 1.000000084801159} {16, 0.9999999841142666} {17, 0.9999998754840438} {18, 0.9999997045956466} {19, 0.9999993860049226} {20, 0.9999988212295918} {21, 0.9999982112593527} {22, 0.9999976012891135} {23, 0.9999969913188743} {24, 0.9999963813486352} {25, 0.999995771378396} {26, 0.9999951614081569} {27, 0.9999945514379176} {28, 0.9999939414676784} {29, 0.9999936364825589} {30, 0.9999936364825589} {1, 0.9035486007990047} {2, 0.9989325642605026} {3, 0.9994802386458977} {4, 0.9997434747273531} {5, 0.9998725602150081} {6, 0.9999364838261064} {7, 0.9999682925200661} {8, 0.9999841587196179} {9, 0.9999920821467555} {10, 0.9999960411212996} {11, 0.9999980192759574} {12, 0.9999990067236363} {13, 0.9999994974469756} {14, 0.999999736872344} {15, 0.9999998447285845} {16, 0.99999987494787} {17, 0.9999998426408537} {18, 0.9999997316542867} {19, 0.9999994864949293} {20, 0.9999990346055386} {21, 0.9999985452980851} {22, 0.9999980559906314} {23, 0.9999975666831777} {24, 0.9999970773757241} {25, 0.9999965880682704} {26, 0.9999960987608169} {27, 0.9999956094533632} {28, 0.9999951201459095} {29, 0.9999948754921827} {30, 0.9999948754921827} Diagonalisation. Discretization checksum [-1] (channel 1): 5.852384086047358736813757154759414`10.*^-25 Discretization checksum [-1] (channel 2): 5.852385843651092384018924020530979`10.*^-25 BAND="asymode" thetaCh={"0.005996580826", "0.09994301377"} Discretization (channel 1) "xitable" (channel 1) 0.5909823138 0.5606036342 0.5067810041 0.3767517443 0.2587908343 0.1804342968 0.1273564352 0.09008848705 0.06372753307 0.04507281676 0.03187529092 0.0225406762 0.01593917619 0.01127087931 0.007969778112 0.005635506128 0.003984912265 0.002817761158 0.001992458952 0.001408881561 0.0009962298169 0.0007044408991 0.0004981149487 0.0003522204635 0.0002490574782 0.000176110233 0.0001245287386 0.00008805511625 0.00006226436823 0.00004402755768 0.00003113218299 "zetatable" (channel 1) -0.06860317481 0.00842293006 0.00848598668 0.01901694081 0.01375039565 0.006919501124 0.003496143659 0.00181215682 0.0009413929451 0.0004878799897 0.0002523007069 0.0001302622718 0.00006716875284 0.00003459844108 0.00001780504544 9.155130289e-6 4.703792344e-6 2.414990626e-6 1.239037832e-6 6.352890737e-7 3.255294253e-7 1.667071895e-7 8.532492352e-8 4.364823188e-8 2.231710655e-8 1.140516171e-8 5.82598788e-9 2.974815949e-9 1.518414783e-9 7.748390277e-10 3.953173479e-10 Precision last xi:969.6972385516284 Precision last zeta: 964.9711565771685 Discretization (channel 2) "xitable" (channel 2) 0.5939644255 0.5602139496 0.5065701795 0.3763230626 0.2585481344 0.1803402826 0.1273208118 0.09007489396 0.06372237423 0.04507087116 0.03187456064 0.02254040308 0.01593907434 0.01127084142 0.007969764045 0.005635500916 0.003984910337 0.002817760446 0.001992458689 0.001408881464 0.0009962297813 0.0007044408861 0.0004981149439 0.0003522204618 0.0002490574775 0.0001761102328 0.0001245287384 0.00008805511626 0.00006226436815 0.00004402755773 0.00003113218293 "zetatable" (channel 2) 0.03430139572 -0.004514382821 -0.004159654476 -0.009422212338 -0.00681192289 -0.003435766341 -0.001740209113 -0.000903353286 -0.000469674785 -0.0002435252877 -0.0001259697405 -0.00006504817815 -0.00003354489971 -0.0000172800242 -8.893070561e-6 -4.572878236e-6 -2.349563193e-6 -1.206331617e-6 -6.189378134e-7 -3.173541856e-7 -1.626195926e-7 -8.328105193e-8 -4.262619752e-8 -2.180598829e-8 -1.11494932e-8 -5.698054445e-9 -2.910734198e-9 -1.486281736e-9 -7.586476314e-10 -3.87143381e-10 -1.975237946e-10 Precision last xi:969.7298076233533 Precision last zeta: 964.7023972457478 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QSZ}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 9}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005996580826", "0.09994301377"} theta0Ch={"0.005996580826161659", "0.099943013769376"} gammaPolCh={"0.043689483405819976", "0.17836156911676657"} checkdefinitions[] -> 0.32695121550060813 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QSZ_-2.1 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 0}] Generating matrix: ham.model..QSZ_-1.0 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, gammaPolCh[2]}, {gammaPolCh[2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.model..QSZ_-1.2 hamil={{(coefzeta[1, 0] - coefzeta[2, 0])/2, gammaPolCh[1]}, {gammaPolCh[1], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{0, -1}] Generating matrix: ham.model..QSZ_0.-1 hamil={{(2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QSZ_0.1 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[2], gammaPolCh[1], 0}, {-gammaPolCh[2], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, -gammaPolCh[1]}, {gammaPolCh[1], 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, gammaPolCh[2]}, {0, -gammaPolCh[1], gammaPolCh[2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=2.525757381022231*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QSZ_0.3 hamil={{(2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 0}] Generating matrix: ham.model..QSZ_1.0 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[1]}, {-gammaPolCh[1], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QSZ_1.2 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[2]}, {-gammaPolCh[2], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=0. diagvc[{2, 1}] Generating matrix: ham.model..QSZ_2.1 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24834481994895366, -0.22522377864791573, -0.1590077409544245, -0.13594307052612373, -0.07847774132476536, -0.07645228526291943, -0.059373981318289415, -0.017150889544564892, 0.017150889544564892, 0.01917634560641081, 0.026452285262919425, 0.06867537703664395, 0.11241919007382828, 0.13162060384043142, 0.20261091576190876, 0.22186870040124929} Lowest energies (GS shifted):{0., 0.023121041301037926, 0.08933707899452917, 0.11240174942282993, 0.16986707862418832, 0.17189253468603422, 0.18897083863066425, 0.23119393040438876, 0.26549570949351853, 0.2675211655553645, 0.27479710521187306, 0.3170201969855976, 0.3607640100227819, 0.3799654237893851, 0.45095573571086245, 0.4702135203502029} Scale factor SCALE(Ninit):1.4426950408889634 Lowest energies (shifted and scaled):{0., 0.016026284589424487, 0.061923744424519006, 0.07791095570244003, 0.11774288661831069, 0.11914682577692721, 0.1309846040048933, 0.16025142102237427, 0.18402760248619468, 0.18543154164481124, 0.19047483870364446, 0.21974165572112542, 0.25006255639479114, 0.263371962209877, 0.31257869676532013, 0.3259271758919096} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QSZ.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} s: SZd op.model..QSZ.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004339`4.0889346436251826} {ham, 0.038358`4.081158438874155} {maketable, 0.479238`6.132096240556702} {xi, 0.511718`6.160575687316212} {_, 0} data gammaPol=0.043689483405819976 "Success!"