NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.2131570881878404 faktor=1.1657299587521546 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QSZ PREC=1000 DISCNMAX=30 mMAX=80 rho[0]=0.003 pos=0.0002969999999996994 neg=0.0003029999999996994 theta=0.005996580826161658483524788747837360059265188168972919766838070480100395158446614731343923686893948999331094679028785539332991892383277544678079112445102930086083189787038311832988686583210214119366950590606341841984471244909450065\ 94479069625040763162336838811478384119899324172814744860561752267997362490013498345880905380134243093801240547117581153158137493202628144739104727027982771468021828709871494165627588919402444401848239759011357053402992283166204584107601740\ 01405382725431224457405611694249706237139273349020115064591253999056554034872799086817220705155909991026496836726961451749443376510770744687976512438962121047591490072781426810195553144841147498116386985778670041891230137747337533956173026\ 90175418953243181759354219845228635609655241119831127406386963652153728186224378228341709305329094029938251337884976371061396688839658537255588347654465951355036729792962412433095538445071841843993536535247154097691778114251890371226462163\ 1512394428157232442572888456057648630046438218170062823903782486348415347`1000. {1, 0.9703628824397438} {2, 0.9981366152651787} {3, 0.9991100001661253} {4, 0.9995647459922659} {5, 0.9997847310816466} {6, 0.9998929455851733} {7, 0.9999466165610487} {8, 0.9999733439093023} {9, 0.9999866805041921} {10, 0.9999933417077572} {11, 0.9999966698586388} {12, 0.9999983319628436} {13, 0.9999991598046785} {14, 0.9999995674880401} {15, 0.9999997589003393} {16, 0.9999998297591755} {17, 0.9999998154968169} {18, 0.9999997089827976} {19, 0.9999994569602826} {20, 0.9999990385388084} {21, 0.9999986116028894} {22, 0.9999981846669703} {23, 0.9999977577310513} {24, 0.9999973307951322} {25, 0.9999969038592131} {26, 0.9999964769232941} {27, 0.9999960499873749} {28, 0.9999956230514558} {29, 0.9999955163174762} {30, 0.9999955163174762} {1, 0.9749825325715069} {2, 1.0015689882624523} {3, 1.0008167953506597} {4, 1.0004169773592284} {5, 1.0002107012147439} {6, 1.0001059124428244} {7, 1.0000530976685225} {8, 1.0000265840815319} {9, 1.0000133003595437} {10, 1.000006651240064} {11, 1.0000033238419546} {12, 1.0000016573894404} {13, 1.0000008193875407} {14, 1.0000003910181865} {15, 1.0000001581424132} {16, 1.0000000043337682} {17, 0.9999998526908023} {18, 0.9999996273927287} {19, 0.9999992157907079} {20, 0.9999985669803657} {21, 0.999997905773845} {22, 0.9999972445673243} {23, 0.9999965833608035} {24, 0.9999959221542829} {25, 0.9999952609477623} {26, 0.9999945997412416} {27, 0.999993938534721} {28, 0.9999932773282003} {29, 0.99999311202657} {30, 0.99999311202657} rho[0]=0.05 pos=0.005025000000002506 neg=0.004975000000002506 theta=0.099943013769376009564392321314396855001603840092243565055678932309906496546240321017207284452009030299862901699120858121006639853268322856514470540617120735814336414505990260549281115012384575562804025140378456812858362088332599777\ 86079066242164177201254415655017031932684715460816637390276173558407130224179774150479621648711718864515369546150764289283908783441077983369820817332751152064897709849540998129554874566204839116534257370931679738046226840225165755729202214\ 44854940311542746903180990228820766562240291575206609972772050558093908826609235823333084362019338490066752817580294931809202333010283201338847988291789115177439105045955548799501413949775959605036883393046633049386362174414761502961518187\ 83817633134516532696930816730053287523828021655697477012586214142117934812382671689011657003388458545933093917447750331677111028404031843091644936680024862766309182239913591797127380864988377209281879179470031920920319898014722958667851234\ 8049892353916080608419036603826954708706094209408192065826436190107001083`1000. {1, 0.9740945812325732} {2, 1.0008167953569} {3, 1.000416977371987} {4, 1.0002107012405466} {5, 1.0001059124947316} {6, 1.000053097772614} {7, 1.0000265842900034} {8, 1.0000133007767802} {9, 1.0000066520748014} {10, 1.0000033255117085} {11, 1.0000016607292284} {12, 1.0000008260673956} {13, 1.0000004043781707} {14, 1.0000001848626716} {15, 1.0000000577745625} {16, 0.9999999595726651} {17, 0.9999998411567457} {18, 0.9999996433190095} {19, 0.9999992671406446} {20, 0.999998668737032} {21, 0.9999980587667929} {22, 0.9999974487965537} {23, 0.9999968388263145} {24, 0.9999962288560753} {25, 0.9999956188858362} {26, 0.999995008915597} {27, 0.9999943989453578} {28, 0.9999937889751186} {29, 0.9999936364825588} {30, 0.9999936364825588} {1, 0.9718329899397699} {2, 0.9991100001697859} {3, 0.9995647459994262} {4, 0.9997847310957864} {5, 0.9998929456133169} {6, 0.9999466166171833} {7, 0.99997334402142} {8, 0.9999866807282699} {9, 0.9999933421557673} {10, 0.9999966707545036} {11, 0.9999983337544468} {12, 0.9999991633877218} {13, 0.9999995746539668} {14, 0.9999997732320511} {15, 0.9999998584224384} {16, 0.9999998728231994} {17, 0.9999998236354221} {18, 0.9999996862653995} {19, 0.9999993920281469} {20, 0.9999989122786752} {21, 0.9999984229712215} {22, 0.999997933663768} {23, 0.9999974443563143} {24, 0.9999969550488605} {25, 0.999996465741407} {26, 0.9999959764339533} {27, 0.9999954871264997} {28, 0.999994997819046} {29, 0.9999948754921826} {30, 0.9999948754921826} Diagonalisation. Discretization checksum [-1] (channel 1): 4.921248798645110436039753408366074`10.*^-25 Discretization checksum [-1] (channel 2): 4.92125027660778949651908117606689`10.*^-25 BAND="asymode" thetaCh={"0.005996580826", "0.09994301377"} Discretization (channel 1) "xitable" (channel 1) 0.5832220803 0.5063486662 0.4067244403 0.2953856419 0.2103885003 0.14992665 0.1065869688 0.07559139123 0.05353238139 0.03788210925 0.02679697974 0.01895196104 0.01340234307 0.009477340097 0.00670165094 0.004738839037 0.003350885025 0.002369440505 0.001675449907 0.001184722858 0.0008377258701 0.0005923617518 0.0004188630479 0.0002961809156 0.0002094315369 0.0001480904623 0.0001047157691 0.0000740452313 0.00005235788363 0.00003702261526 0.00002617894071 "zetatable" (channel 1) -0.06793025962 0.01486737171 0.01463248856 0.01412960197 0.008558487117 0.004630569492 0.002472246859 0.001304088527 0.0006811520615 0.0003536534247 0.000182966453 0.00009444866297 0.00004868003641 0.00002506092268 0.00001288913205 6.623445434e-6 3.401045956e-6 1.745154922e-6 8.948859459e-7 4.585953829e-7 2.348735132e-7 1.202246502e-7 6.150634854e-8 3.145028889e-8 1.607380562e-8 8.211347309e-9 4.19299726e-9 2.14028081e-9 1.092124615e-9 5.57186355e-10 2.842319274e-10 Precision last xi:969.61255335088 Precision last zeta: 964.8184553063437 Discretization (channel 2) "xitable" (channel 2) 0.5861865402 0.5058693288 0.406386733 0.2951073732 0.2102544783 0.149871473 0.1065651346 0.07558295098 0.05352916816 0.03788089727 0.02679652528 0.01895179131 0.01340227987 0.009477316623 0.006701642239 0.004738835818 0.003350883836 0.002369440067 0.001675449745 0.001184722798 0.0008377258482 0.0005923617438 0.0004188630449 0.0002961809145 0.0002094315365 0.0001480904622 0.000104715769 0.00007404523133 0.00005235788356 0.0000370226153 0.00002617894065 "zetatable" (channel 2) 0.03396484204 -0.00770248127 -0.007214519044 -0.00699879427 -0.004244886086 -0.002302029981 -0.001231265033 -0.000650195244 -0.000339826281 -0.0001765020856 -0.00009133496338 -0.00004715406429 -0.00002430593654 -0.00001251370485 -6.436264244e-6 -3.307592307e-6 -1.698463242e-6 -8.7154905e-7 -4.469291572e-7 -2.290408892e-7 -1.17308386e-7 -6.004815045e-8 -3.072109234e-8 -1.57091075e-8 -8.028887954e-9 -4.101669836e-9 -2.094500158e-9 -1.069144822e-9 -5.455678408e-10 -2.783497366e-10 -1.419973652e-10 Precision last xi:969.6453705223996 Precision last zeta: 964.5498782368621 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QSZ}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 9}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005996580826", "0.09994301377"} theta0Ch={"0.005996580826161659", "0.099943013769376"} gammaPolCh={"0.043689483405819976", "0.17836156911676657"} checkdefinitions[] -> 0.327119396256629 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QSZ_-2.1 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 0}] Generating matrix: ham.model..QSZ_-1.0 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, gammaPolCh[2]}, {gammaPolCh[2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.model..QSZ_-1.2 hamil={{(coefzeta[1, 0] - coefzeta[2, 0])/2, gammaPolCh[1]}, {gammaPolCh[1], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, -1}] Generating matrix: ham.model..QSZ_0.-1 hamil={{(2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QSZ_0.1 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[2], gammaPolCh[1], 0}, {-gammaPolCh[2], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, -gammaPolCh[1]}, {gammaPolCh[1], 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, gammaPolCh[2]}, {0, -gammaPolCh[1], gammaPolCh[2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.6645352591003757*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QSZ_0.3 hamil={{(2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 0}] Generating matrix: ham.model..QSZ_1.0 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[1]}, {-gammaPolCh[1], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QSZ_1.2 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[2]}, {-gammaPolCh[2], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={2, 2} det[vec]=-1. 1-abs=0. orthogonality check=0. diagvc[{2, 1}] Generating matrix: ham.model..QSZ_2.1 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24810975882913766, -0.22488301410426415, -0.15931667925013304, -0.13614628707923018, -0.07816016499177698, -0.07594755083163496, -0.05929672328547614, -0.01698270878854403, 0.01698270878854403, 0.019195322948686065, 0.02594755083163495, 0.06826156532856706, 0.11259915062738035, 0.13195275448408517, 0.20224693887031203, 0.22165689528098742} Lowest energies (GS shifted):{0., 0.023226744724873516, 0.08879307957900462, 0.11196347174990748, 0.1699495938373607, 0.1721622079975027, 0.18881303554366152, 0.23112705004059364, 0.2650924676176817, 0.26730508177782375, 0.27405730966077263, 0.31637132415770475, 0.360708909456518, 0.3800625133132228, 0.4503566976994497, 0.4697666541101251} Scale factor SCALE(Ninit):1.2131570881878404 Lowest energies (shifted and scaled):{0., 0.019145702523626667, 0.07319174115500551, 0.09229099251866342, 0.1400886954312106, 0.1419125434568996, 0.15563774665464136, 0.19051700088225246, 0.21851454374607404, 0.2203383917717631, 0.22590422322812878, 0.2607834774557399, 0.29733075210839244, 0.31328384181552543, 0.3712270258191973, 0.38722656668629896} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QSZ.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} s: SZd op.model..QSZ.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004593`4.113641438913898} {ham, 0.0401050000000000001`4.100501004732745} {maketable, 0.531352`6.176927313090975} {xi, 0.59165`6.223609862347738} {_, 0} data gammaPol=0.043689483405819976 "Success!"