NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def1ch, NRDOTS=1 COEFCHANNELS:2 H0=coefzeta[2, 0]*(-1/2 + nc[f[0, 0, 0], f[1, 0, 0]]) + coefzeta[1, 0]*(-1/2 + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 "selfopd[CR,UP]="-nc[d[0, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 1]] - 0.05*nc[d[0, 0], d[0, 1], d[1, 0]] "selfopd[CR,DO]="-nc[d[0, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[0, 0]] + 0.05*nc[d[0, 0], d[0, 1], d[1, 1]] "selfopd[AN,UP]="-nc[d[1, 1], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 1]] - 0.05*nc[d[0, 0], d[1, 0], d[1, 1]] "selfopd[AN,DO]="-nc[d[1, 0], epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])] + nc[epsilon*(nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]]), d[1, 0]] + 0.05*nc[d[0, 1], d[1, 0], d[1, 1]] params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.05, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.05, epsilon -> -0.025, GammaU -> 0.003, GammaD -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -coefzeta[1, 0]/2 - coefzeta[2, 0]/2 + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[2]*nc[d[0, 0], f[1, 0, 0]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[2, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0201394465967895 faktor=1.3862943611198906 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QSZ PREC=1000 DISCNMAX=30 mMAX=80 rho[0]=0.003 pos=0.0002969999999996994 neg=0.0003029999999996994 theta=0.005996580826161658483524788747837360059265188168972919766838070480100395158446614731343923686893948999331094679028785539332991892383277544678079112445102930086083189787038311832988686583210214119366950590606341841984471244909450065\ 94479069625040763162336838811478384119899324172814744860561752267997362490013498345880905380134243093801240547117581153158137493202628144739104727027982771468021828709871494165627588919402444401848239759011357053402992283166204584107601740\ 01405382725431224457405611694249706237139273349020115064591253999056554034872799086817220705155909991026496836726961451749443376510770744687976512438962121047591490072781426810195553144841147498116386985778670041891230137747337533956173026\ 90175418953243181759354219845228635609655241119831127406386963652153728186224378228341709305329094029938251337884976371061396688839658537255588347654465951355036729792962412433095538445071841843993536535247154097691778114251890371226462163\ 1512394428157232442572888456057648630046438218170062823903782486348415347`1000. {1, 0.9966514426797723} {2, 0.9984560926128662} {3, 0.9992568961538966} {4, 0.9996352677176394} {5, 0.9998192927020125} {6, 0.9999100554346242} {7, 0.9999551292008266} {8, 0.9999775896840618} {9, 0.9999888006982597} {10, 0.9999944010038202} {11, 0.9999971990494555} {12, 0.9999985959297959} {13, 0.9999992906027015} {14, 0.9999996305340081} {15, 0.9999997857217073} {16, 0.9999998337677397} {17, 0.9999997986971391} {18, 0.9999996629751038} {19, 0.9999993587407477} {20, 0.9999989318048286} {21, 0.9999985048689095} {22, 0.9999980779329904} {23, 0.9999976509970714} {24, 0.9999972240611523} {25, 0.9999967971252333} {26, 0.9999963701893142} {27, 0.9999959432533951} {28, 0.9999955163174761} {29, 0.9999955163174761} {30, 0.9999955163174761} {1, 1.0025022573952087} {2, 1.0013361749299252} {3, 1.000691367541439} {4, 1.0003518104103117} {5, 1.0001774775103218} {6, 1.000089136997765} {7, 1.0000446685732136} {8, 1.000022359085413} {9, 1.000011185145541} {10, 1.0000055927598448} {11, 1.0000027939967608} {12, 1.0000013915422212} {13, 1.0000006846860994} {14, 1.0000003201296617} {15, 1.0000001156270109} {16, 0.9999999689349013} {17, 0.9999998067093118} {18, 0.9999995478379479} {19, 0.9999990628852561} {20, 0.9999984016787353} {21, 0.9999977404722147} {22, 0.999997079265694} {23, 0.9999964180591734} {24, 0.9999957568526526} {25, 0.999995095646132} {26, 0.9999944344396113} {27, 0.9999937732330907} {28, 0.9999931120265699} {29, 0.9999931120265699} {30, 0.9999931120265699} rho[0]=0.05 pos=0.005025000000002506 neg=0.004975000000002506 theta=0.099943013769376009564392321314396855001603840092243565055678932309906496546240321017207284452009030299862901699120858121006639853268322856514470540617120735814336414505990260549281115012384575562804025140378456812858362088332599777\ 86079066242164177201254415655017031932684715460816637390276173558407130224179774150479621648711718864515369546150764289283908783441077983369820817332751152064897709849540998129554874566204839116534257370931679738046226840225165755729202214\ 44854940311542746903180990228820766562240291575206609972772050558093908826609235823333084362019338490066752817580294931809202333010283201338847988291789115177439105045955548799501413949775959605036883393046633049386362174414761502961518187\ 83817633134516532696930816730053287523828021655697477012586214142117934812382671689011657003388458545933093917447750331677111028404031843091644936680024862766309182239913591797127380864988377209281879179470031920920319898014722958667851234\ 8049892353916080608419036603826954708706094209408192065826436190107001083`1000. {1, 1.0013348594771612} {2, 1.0006913675489255} {3, 1.0003518104255327} {4, 1.0001774775410686} {5, 1.0000891370595488} {6, 1.0000446686970585} {7, 1.0000223593333848} {8, 1.000011185641775} {9, 1.0000055937525747} {10, 1.0000027959824969} {11, 1.0000013955139728} {12, 1.0000006926298912} {13, 1.0000003360175034} {14, 1.0000001474029832} {15, 1.0000000324871243} {16, 0.99999993381404} {17, 0.9999998020476888} {18, 0.9999995713050133} {19, 0.9999991262147113} {20, 0.9999985162444721} {21, 0.999997906274233} {22, 0.9999972963039938} {23, 0.9999966863337546} {24, 0.9999960763635154} {25, 0.9999954663932763} {26, 0.9999948564230371} {27, 0.9999942464527979} {28, 0.9999936364825587} {29, 0.9999936364825587} {30, 0.9999936364825587} {1, 0.9984548506801184} {2, 0.9992568961582313} {3, 0.9996352677261061} {4, 0.9998192927188085} {5, 0.9999100554680616} {6, 0.999955129267546} {7, 0.9999775898173613} {8, 0.9999888009647087} {9, 0.9999944015365685} {10, 0.9999972001148063} {11, 0.9999985980603519} {12, 0.9999992948636495} {13, 0.9999996390557504} {14, 0.9999998027650512} {15, 0.9999998678542686} {16, 0.9999998668700515} {17, 0.9999997993207971} {18, 0.9999996314320014} {19, 0.9999992792592654} {20, 0.9999987899518118} {21, 0.9999983006443581} {22, 0.9999978113369045} {23, 0.9999973220294508} {24, 0.9999968327219971} {25, 0.9999963434145435} {26, 0.9999958541070898} {27, 0.9999953647996361} {28, 0.9999948754921825} {29, 0.9999948754921825} {30, 0.9999948754921825} Diagonalisation. Discretization checksum [-1] (channel 1): 4.138260473352322613035634832179741`10.*^-25 Discretization checksum [-1] (channel 2): 4.13826171616584131376889551711225`10.*^-25 BAND="asymode" thetaCh={"0.005996580826", "0.09994301377"} Discretization (channel 1) "xitable" (channel 1) 0.541532724 0.4164315387 0.3223653028 0.2405081113 0.1750221051 0.1256081536 0.08948872045 0.06351779621 0.04499901537 0.03184925673 0.02253148185 0.01593592729 0.01126973096 0.007969372171 0.005635362616 0.003984861529 0.002817743219 0.001992452612 0.001408879318 0.0009962290255 0.0007044406175 0.000498114851 0.0003522204271 0.0002490574672 0.0001761102273 0.0001245287384 0.00008805511436 0.00006226436937 0.00004402755628 0.0000311321843 0.00002201377704 "zetatable" (channel 1) -0.06296156484 0.02210697413 0.01322447339 0.009287724277 0.005746025199 0.003265225223 0.001771684214 0.0009382419111 0.000490566477 0.0002547361683 0.0001317616619 0.00006799118208 0.0000350284374 0.00001802489072 9.266302947e-6 4.759700749e-6 2.443027763e-6 1.253077726e-6 6.423145085e-7 3.290435486e-7 1.684646136e-7 8.620372883e-8 4.408765622e-8 2.253682877e-8 1.151501806e-8 5.880925917e-9 3.00227131e-9 1.532162221e-9 7.816846689e-10 3.987800019e-10 2.034299371e-10 Precision last xi:969.5613769326351 Precision last zeta: 964.6972779068685 Discretization (channel 2) "xitable" (channel 2) 0.5442630715 0.4158115861 0.3220631647 0.2403395233 0.1749425895 0.1255744945 0.08947528224 0.06351259585 0.04499703687 0.03184851129 0.02253120267 0.01593582315 0.01126969224 0.007969357802 0.005635357295 0.003984859563 0.002817742493 0.001992452344 0.001408879219 0.0009962289894 0.0007044406041 0.0004981148461 0.0003522204252 0.0002490574666 0.000176110227 0.0001245287383 0.00008805511426 0.00006226436941 0.00004402755621 0.00003113218435 0.00002201377697 "zetatable" (channel 2) 0.03148120704 -0.01125485716 -0.006519487529 -0.004601612805 -0.002854201671 -0.001625193407 -0.0008830041625 -0.0004679997262 -0.0002448133711 -0.0001271592823 -0.00006578373164 -0.000033949047 -0.00001749149182 -9.001229064e-6 -4.62758284e-6 -2.377076629e-6 -1.220129829e-6 -6.258475889e-7 -3.208118193e-7 -1.643491128e-7 -8.414599349e-8 -4.30587149e-8 -2.202225784e-8 -1.125763303e-8 -5.752121894e-9 -2.937772999e-9 -1.499794091e-9 -7.654140051e-10 -3.905120713e-10 -1.992287094e-10 -1.016373759e-10 Precision last xi:969.5940719310075 Precision last zeta: 964.4286100663528 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QSZ}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 30, 9}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, GammaD, GammaU, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} thetaCh={"0.005996580826", "0.09994301377"} theta0Ch={"0.005996580826161659", "0.099943013769376"} gammaPolCh={"0.043689483405819976", "0.17836156911676657"} checkdefinitions[] -> 0.32836192614419274 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QSZ_-2.1 hamil={{(-coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 0}] Generating matrix: ham.model..QSZ_-1.0 hamil={{(-coefzeta[1, 0] + coefzeta[2, 0])/2, gammaPolCh[2]}, {gammaPolCh[2], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{-1, 2}] Generating matrix: ham.model..QSZ_-1.2 hamil={{(coefzeta[1, 0] - coefzeta[2, 0])/2, gammaPolCh[1]}, {gammaPolCh[1], epsilon - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={2, 2} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=8.881784197001252*^-16 diagvc[{0, -1}] Generating matrix: ham.model..QSZ_0.-1 hamil={{(2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{0, 1}] Generating matrix: ham.model..QSZ_0.1 hamil={{(coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[2], gammaPolCh[1], 0}, {-gammaPolCh[2], (2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2, 0, -gammaPolCh[1]}, {gammaPolCh[1], 0, (2*epsilon - coefzeta[1, 0] + coefzeta[2, 0])/2, gammaPolCh[2]}, {0, -gammaPolCh[1], gammaPolCh[2], 2*epsilon + U - coefzeta[1, 0]/2 - coefzeta[2, 0]/2}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=3.9968028886505635*^-15 diagvc[{0, 3}] Generating matrix: ham.model..QSZ_0.3 hamil={{(2*epsilon + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 0}] Generating matrix: ham.model..QSZ_1.0 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[1]}, {-gammaPolCh[1], (4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=2.220446049250313*^-16 diagvc[{1, 2}] Generating matrix: ham.model..QSZ_1.2 hamil={{(2*epsilon + coefzeta[1, 0] + coefzeta[2, 0])/2, -gammaPolCh[2]}, {-gammaPolCh[2], (4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0])/2}} dim={2, 2} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{2, 1}] Generating matrix: ham.model..QSZ_2.1 hamil={{(4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.24642056765483178, -0.22237178793524298, -0.16160266373468138, -0.13761010759542924, -0.07587505598213676, -0.07222138593779115, -0.05875197815463651, -0.015740178900980367, 0.015740178900980367, 0.019393848945325965, 0.022221385937791154, 0.0652331851914473, 0.11389367370228394, 0.13441022309647144, 0.1995642285734529, 0.22013700154797713} Lowest energies (GS shifted):{0., 0.024048779719588798, 0.0848179039201504, 0.10881046005940254, 0.17054551167269502, 0.17419918171704063, 0.18766858950019527, 0.2306803887538514, 0.2621607465558121, 0.26581441660015775, 0.26864195359262294, 0.31165375284627905, 0.3603142413571157, 0.3808307907513032, 0.4459847962282847, 0.4665575692028089} Scale factor SCALE(Ninit):1.0201394465967895 Lowest energies (shifted and scaled):{0., 0.023574012160608164, 0.08314344102966024, 0.10666233956778844, 0.16717862664916947, 0.17076016646368633, 0.18396366313082232, 0.22612632961445311, 0.2569852067091287, 0.26056674652364564, 0.2633384626864682, 0.305501129170099, 0.35320096929800426, 0.3733124839175313, 0.4371802283659367, 0.45734685660794366} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QSZ.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} s: SZd op.model..QSZ.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004564`4.110890629242148} {ham, 0.03943`4.093129261129871} {maketable, 0.507532`6.157008423303478} {xi, 0.519376`6.167026870810081} {_, 0} data gammaPol=0.043689483405819976 "Success!"