NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def2ch, NRDOTS=2 COEFCHANNELS:2 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) + coefzeta[2, 0]*(-1 + nc[f[0, 1, 0], f[1, 1, 0]] + nc[f[0, 1, 1], f[1, 1, 1]]) adddots, nrdots=2 params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.2, delta -> 0., t -> 0., gammaPol2 -> 0.09772050238058398*Sqrt[gammaA*thetaCh[1]], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> 0.07978845608028654*Sqrt[gammaA*thetaCh[1]], gammaPolch2 -> 0.09772050238058398*Sqrt[gammaA*thetaCh[2]], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.2, epsilon -> -0.03, Gamma1 -> 0.02, Gamma2 -> 0.03, t12 -> 0.05} NRDOTS:2 CHANNELS:2 basis:{a[], d[], f[0], f[1]} lrchain:{} lrextrarule:{} NROPS:4 Hamiltonian generated. -coefzeta[1, 0] - coefzeta[2, 0] + epsilon*nc[a[0, 0], a[1, 0]] + t12*nc[a[0, 0], d[1, 0]] + gammaPolCh[2]*nc[a[0, 0], f[1, 1, 0]] + epsilon*nc[a[0, 1], a[1, 1]] + t12*nc[a[0, 1], d[1, 1]] + gammaPolCh[2]*nc[a[0, 1], f[1, 1, 1]] + t12*nc[d[0, 0], a[1, 0]] + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + t12*nc[d[0, 1], a[1, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 1, 0], a[1, 0]] + coefzeta[2, 0]*nc[f[0, 1, 0], f[1, 1, 0]] + gammaPolCh[2]*nc[f[0, 1, 1], a[1, 1]] + coefzeta[2, 0]*nc[f[0, 1, 1], f[1, 1, 1]] - U*nc[a[0, 0], a[0, 1], a[1, 0], a[1, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=3.060418339790368 faktor=0.6535054289790315 Generating basis Basis states generated. BASIS NR=256 Basis: basis.model..QS PREC=1000 Tmin=1.*^-8 Tmin=1.*^-8 ==> Nmax=28 DISCNMAX=28 mMAX=80 rho[0]=0.02 pos=0.0020100000000010023 neg=0.001990000000001002 theta=0.039977205507750402470879950496908119338807683305504404848005738950505403439995294215459259254924309427152179186808008439743110747653986519307375416435280966194271347191570348887121571929187087222424821973769519500112633626221235094\ 18432558342120296586605156612811930864966181904860742689498046028197994542801853920074837221087286657513576553259462617739299391286912060542622813320180182188944960047460532401755533553185530259924670339333318174690259766986274540114838385\ 87937323281852490436283282637005712304342753235262741534357209419892351987089409535735398758285227967218173372715472275677809785574367508047270635283993709266362329985611076771728159429850815351012146275122334594742341039689780956015852439\ 86942142441157708354667646325281543368127604473695495803109604408135722866186153638961560120957068819292770633201698326422145044521334026205416508590847335517881179595876031641768516186687932483900639976296897025221169434529385703282932572\ 0572644303086009718281694037518179992377464214559940491928488491356023668`1000. {1, 1.0761890447892055} {2, 1.3348476755700647} {3, 1.3341128112612928} {4, 1.3337288967050016} {5, 1.33353260365863} {6, 1.333433344776338} {7, 1.3333834335421837} {8, 1.3333584069029194} {9, 1.3333458755462215} {10, 1.3333396049046335} {11, 1.3333364674487957} {12, 1.3333348964003353} {13, 1.3333341067226454} {14, 1.3333337036988047} {15, 1.333333485847356} {16, 1.333333344250238} {17, 1.3333332081107667} {18, 1.333333009359693} {19, 1.3333326486216048} {20, 1.3333319651742912} {21, 1.3333311520048827} {22, 1.3333303388354747} {23, 1.3333295256660664} {24, 1.3333287124966582} {25, 1.3333278993272502} {26, 1.333327086157842} {27, 1.3333262729884336} {28, 1.3333254598190254} {29, 1.3333248499419692} {30, 1.3333248499419692} {1, 1.0759937571172484} {2, 1.3316234295861649} {3, 1.3325050959984854} {4, 1.3329255882366735} {5, 1.3331310180189455} {6, 1.3332325605399469} {7, 1.3332830425189246} {8, 1.3333082115725348} {9, 1.3333207779927037} {10, 1.3333270563201363} {11, 1.333330193537436} {12, 1.333331760206237} {13, 1.333332540148988} {14, 1.3333329234590419} {15, 1.3333331018219168} {16, 1.333333164426665} {17, 1.3333331425775778} {18, 1.333333025350591} {19, 1.3333327541323194} {20, 1.333332209495171} {21, 1.3333315572334326} {22, 1.333330904971694} {23, 1.3333302527099558} {24, 1.3333296004482171} {25, 1.3333289481864787} {26, 1.3333282959247401} {27, 1.333327643663002} {28, 1.3333269914012633} {29, 1.3333265022049594} {30, 1.3333265022049594} rho[0]=0.03 pos=0.0029699999999969937 neg=0.0030299999999969934 theta=0.059965808261616581110224976137925216703711493889079300312738152745222235816978971764099040071723915828458832454188379771152794900395275446780791124451029300860831897870383118329886865832102141193669505906063418419844712449094500659\ 44790696250407631623368388114783841198993241728147448605617522679973624900134983458809053801342430938012405471175811531581374932026281447391047270279827714680218287098714941656275889194024444018482397590113570534029922831662045841076017400\ 14053827254312244574056116942497062371392733490201150645912539990565540348727990868172207051559099910264968367269614517494433765107707446879765124389621210475914900727814268101955531448411474981163869857786700418912301377473375339561730269\ 01754189532431817593542198452286356096552411198311274063869636521537281862243782283417093053290940299382513378849763710613966888396585372555883476544659513550367297929624124330955384450718418439935365352471540976917781142518903712264621631\ 5123944281572324425728884560576486300464382181700628239037824863484153465`1000. {1, 1.0758604533886034} {2, 1.3296779880782374} {3, 1.3316234295826357} {4, 1.3325050959916709} {5, 1.332925588223291} {6, 1.3331310179923588} {7, 1.3332325604869653} {8, 1.3332830424131568} {9, 1.333308211361191} {10, 1.33332077757022} {11, 1.3333270554753809} {12, 1.3333301918481368} {13, 1.3333317568278356} {14, 1.3333325333923745} {15, 1.333332909946013} {16, 1.3333330747960639} {17, 1.3333331103751653} {18, 1.333333034474787} {19, 1.3333328091451815} {20, 1.3333323361065683} {21, 1.3333317669160305} {22, 1.333331197725493} {23, 1.3333306285349553} {24, 1.3333300593444177} {25, 1.3333294901538804} {26, 1.3333289209633428} {27, 1.3333283517728052} {28, 1.3333277825822674} {29, 1.3333273556893641} {30, 1.3333273556893641} {1, 1.0762627027834677} {2, 1.33619794047677} {3, 1.3348476755642849} {4, 1.3341128112493517} {5, 1.333728896680793} {6, 1.333532603609824} {7, 1.333433344678329} {8, 1.3333834333458008} {9, 1.3333584065097754} {10, 1.3333458747595721} {11, 1.3333396033310003} {12, 1.3333364643011454} {13, 1.3333348901046838} {14, 1.3333340941309744} {15, 1.3333336785150838} {16, 1.3333334354795447} {17, 1.3333332435142222} {18, 1.3333330066383635} {19, 1.333332606414515} {20, 1.3333318638113565} {21, 1.3333309824182769} {22, 1.3333301010251974} {23, 1.3333292196321176} {24, 1.333328338239038} {25, 1.3333274568459585} {26, 1.333326575452879} {27, 1.333325694059799} {28, 1.3333248126667194} {29, 1.3333241516219099} {30, 1.3333241516219099} Diagonalisation. Discretization checksum [-1] (channel 1): 4.8409801070479834509694305095`10.*^-49 Discretization checksum [-1] (channel 2): 4.8409786531922455251796627074`10.*^-49 BAND="asymode" thetaCh={"0.03997720551", "0.05996580826"} Discretization (channel 1) "xitable" (channel 1) 0.9645966603 1.186891065 0.739511806 0.2798081394 0.1287820553 0.06387576647 0.03189346787 0.01594139437 0.007970054786 0.003984944407 0.001992462999 0.0009962301815 0.0004981149984 0.0002490574776 0.0001245287406 0.00006226436994 0.00003113218516 0.00001556609261 7.783046288e-6 3.891523181e-6 1.945761564e-6 9.7288081e-7 4.864403948e-7 2.432201995e-7 1.216100982e-7 6.080504911e-8 3.040252424e-8 1.520126214e-8 7.600630943e-9 "zetatable" (channel 1) 0.05362713033 0.01634059152 -0.03591373591 -0.02608153108 -0.004814320732 -0.001066448075 -0.0002839853425 -0.00007157793346 -0.00002060492291 -5.248520318e-6 -1.652500653e-6 -4.253599772e-7 -1.488909669e-7 -3.875167394e-8 -1.500673904e-8 -3.942777977e-9 -1.650544687e-9 -4.365229561e-10 -1.92237035e-10 -5.104557012e-11 -2.314973088e-11 -6.16096618e-12 -2.838810514e-12 -7.565172916e-13 -3.514636799e-13 -9.377925716e-14 -4.374323836e-14 -1.170572917e-14 -5.467050369e-15 Precision last xi:965.4644008531923 Precision last zeta: 959.7323283993366 Discretization (channel 2) "xitable" (channel 2) 0.9601024688 1.186137196 0.7408515379 0.2804164543 0.128851978 0.06388216201 0.03189435568 0.01594140065 0.007970059562 0.003984938365 0.001992462412 0.0009962296896 0.0004981149449 0.0002490574446 0.0001245287369 0.00006226436774 0.00003113218497 0.00001556609239 7.783046317e-6 3.891523085e-6 1.945761596e-6 9.728807421e-7 4.86440389e-7 2.432201904e-7 1.21610097e-7 6.080504852e-8 3.040252417e-8 1.52012621e-8 7.600630941e-9 "zetatable" (channel 2) -0.1072565446 -0.03399665302 0.07260123771 0.05259074985 0.00969133876 0.002139122186 0.0005689314301 0.0001434103585 0.0000412758575 0.0000105151804 3.309699774e-6 8.519503871e-7 2.980951553e-7 7.758341263e-8 3.003367356e-8 7.890659676e-9 3.3023709e-9 8.733679504e-10 3.845547305e-10 1.021113286e-10 4.630450215e-11 1.23231777e-11 5.677928073e-12 1.51310135e-12 7.029428264e-13 1.875571715e-13 8.748557564e-14 2.340861905e-14 1.093310898e-14 Precision last xi:965.4280247744339 Precision last zeta: 959.9969430354441 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {2, 2, 28, 15}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, t12, U} thetaCh={"0.03997720551", "0.05996580826"} theta0Ch={"0.0399772055077504", "0.05996580826161658"} gammaPolCh={"0.11280576109010586", "0.13815827735852163"} checkdefinitions[] -> 0.6302267394979406 calcgsenergy[] diagvc[{-4, 1}] Generating matrix: ham.model..QS_-4.1 hamil={{-coefzeta[1, 0] - coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-3, 2}] Generating matrix: ham.model..QS_-3.2 hamil={{-coefzeta[1, 0], 0, 0, gammaPolCh[2]}, {0, -coefzeta[2, 0], gammaPolCh[1], 0}, {0, gammaPolCh[1], epsilon - coefzeta[1, 0] - coefzeta[2, 0], t12}, {gammaPolCh[2], 0, t12, epsilon - coefzeta[1, 0] - coefzeta[2, 0]}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=1.330532906074211*^-15 diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0] + coefzeta[2, 0], 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, gammaPolCh[1], 0, 0, 0, gammaPolCh[2], 0, 0, 0}, {0, gammaPolCh[1], epsilon - coefzeta[1, 0], t12, 0, 0, 0, 0, gammaPolCh[2], 0}, {Sqrt[2]*gammaPolCh[2], 0, t12, epsilon - coefzeta[1, 0], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2]}, {0, 0, 0, 0, coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], epsilon - coefzeta[2, 0], t12, Sqrt[2]*gammaPolCh[1], 0, 0}, {0, gammaPolCh[2], 0, 0, 0, t12, epsilon - coefzeta[2, 0], 0, gammaPolCh[1], 0}, {0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0}, {0, 0, gammaPolCh[2], 0, 0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12}, {0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=0.9999999999999998 1-abs=2.220446049250313*^-16 orthogonality check=2.2688656712405685*^-14 diagvc[{-2, 3}] Generating matrix: ham.model..QS_-2.3 hamil={{0, gammaPolCh[1], 0, 0, -gammaPolCh[2], 0}, {gammaPolCh[1], epsilon - coefzeta[1, 0], t12, 0, 0, -gammaPolCh[2]}, {0, t12, epsilon - coefzeta[1, 0], 0, 0, 0}, {0, 0, 0, epsilon - coefzeta[2, 0], t12, 0}, {-gammaPolCh[2], 0, 0, t12, epsilon - coefzeta[2, 0], gammaPolCh[1]}, {0, -gammaPolCh[2], 0, 0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0] - coefzeta[2, 0]}} dim={6, 6} det[vec]=0.9999999999999996 1-abs=4.440892098500626*^-16 orthogonality check=7.41073868937292*^-15 diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{coefzeta[2, 0], gammaPolCh[1], 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0}, {gammaPolCh[1], epsilon - coefzeta[1, 0] + coefzeta[2, 0], t12, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, epsilon - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, Sqrt[2]*gammaPolCh[1], epsilon, t12, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[2]/2, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0}, {-(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, t12, epsilon, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0}, {0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2])}, {0, 0, -gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, epsilon, t12, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, -gammaPolCh[2]/2, 0, 0}, {-(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, t12, epsilon, gammaPolCh[1], 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0}, {0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2])}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, epsilon + coefzeta[1, 0] - coefzeta[2, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0}, {0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, t12, epsilon + coefzeta[1, 0] - coefzeta[2, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, -gammaPolCh[2]/2, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon - coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0}, {0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[2, 0], 0, 0, gammaPolCh[1]}, {0, 0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, 0, -gammaPolCh[2]/2, 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon - coefzeta[2, 0], Sqrt[3/2]*gammaPolCh[1], 0}, {0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=1.0000000000000007 1-abs=-6.661338147750939*^-16 orthogonality check=9.038888479926191*^-14 diagvc[{-1, 4}] Generating matrix: ham.model..QS_-1.4 hamil={{epsilon, t12, 0, gammaPolCh[2]}, {t12, epsilon, gammaPolCh[1], 0}, {0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0], 0}, {gammaPolCh[2], 0, 0, 2*epsilon - coefzeta[2, 0]}} dim={4, 4} det[vec]=-1.0000000000000007 1-abs=-6.661338147750939*^-16 orthogonality check=4.010680676458378*^-15 diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[1], epsilon + coefzeta[2, 0], t12, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, epsilon + coefzeta[2, 0], 0, gammaPolCh[1], 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0}, {0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, epsilon + coefzeta[1, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, t12, epsilon + coefzeta[1, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0}, {0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon, Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0}, {0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U, 0, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPolCh[2], 0}, {0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0], -t12, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2]}, {0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0}, {0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], 0, Sqrt[2]*gammaPolCh[1], 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 3*epsilon + U - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U - coefzeta[2, 0], Sqrt[2]*gammaPolCh[1]}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=8.2544092546398*^-14 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{epsilon + coefzeta[2, 0], t12, 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2], 0, gammaPolCh[2]/Sqrt[6], 0, 0, (2*gammaPolCh[2])/Sqrt[3], 0, 0, 0}, {t12, epsilon + coefzeta[2, 0], gammaPolCh[1], 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0}, {0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0}, {0, 0, 0, epsilon + coefzeta[1, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0}, {0, 0, 0, t12, epsilon + coefzeta[1, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0}, {gammaPolCh[2]/Sqrt[2], 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon, Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2]}, {0, gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U, 0, 0, gammaPolCh[1], 0, 0, 0, 0}, {gammaPolCh[2]/Sqrt[6], 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, gammaPolCh[2]/Sqrt[6]}, {0, 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0], -t12, 0, 0, 0, 0}, {0, 0, gammaPolCh[2], 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0}, {(2*gammaPolCh[2])/Sqrt[3], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon, 0, 0, (2*gammaPolCh[2])/Sqrt[3]}, {0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + coefzeta[1, 0] - coefzeta[2, 0], -gammaPolCh[1], 0}, {0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 3*epsilon + U - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2], 0, gammaPolCh[2]/Sqrt[6], 0, 0, (2*gammaPolCh[2])/Sqrt[3], 0, -t12, 3*epsilon + U - coefzeta[2, 0]}} dim={15, 15} det[vec]=0.9999999999999997 1-abs=3.3306690738754696*^-16 orthogonality check=4.425051904760613*^-14 diagvc[{0, 5}] Generating matrix: ham.model..QS_0.5 hamil={{2*epsilon}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{epsilon + coefzeta[1, 0] + coefzeta[2, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0}, {t12, epsilon + coefzeta[1, 0] + coefzeta[2, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-gammaPolCh[1], 0, 2*epsilon + U + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0}, {0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon + coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, 0, gammaPolCh[2]/2, 0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0}, {0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[2, 0], 0, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon + coefzeta[2, 0], Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, gammaPolCh[2]/2, 0, 0, 0}, {0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + U + coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0}, {-(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0}, {0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0], 0, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0}, {0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 3*epsilon + U, -t12, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2])}, {0, 0, 0, gammaPolCh[2]/2, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {-(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + coefzeta[1, 0], -gammaPolCh[1], 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0}, {0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 3*epsilon + U, -t12, 0, 0, -(Sqrt[3/2]*gammaPolCh[2])}, {0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, gammaPolCh[2]/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -t12, 3*epsilon + U, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 3*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], -gammaPolCh[1]}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, -gammaPolCh[1], 4*epsilon + 2*U - coefzeta[2, 0]}} dim={20, 20} det[vec]=1. 1-abs=0. orthogonality check=8.446018949330447*^-14 diagvc[{1, 4}] Generating matrix: ham.model..QS_1.4 hamil={{2*epsilon + coefzeta[2, 0], 0, 0, -gammaPolCh[2]}, {0, 2*epsilon + coefzeta[1, 0], -gammaPolCh[1], 0}, {0, -gammaPolCh[1], 3*epsilon + U, -t12}, {-gammaPolCh[2], 0, -t12, 3*epsilon + U}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.040034807748725*^-15 diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0}, {Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0, 0, -gammaPolCh[2], 0, 0}, {0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], 0, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0}, {0, -gammaPolCh[1], 0, 3*epsilon + U + coefzeta[2, 0], -t12, 0, 0, 0, -gammaPolCh[2], 0}, {0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U + coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 3*epsilon + U + coefzeta[1, 0], -t12, 0, Sqrt[2]*gammaPolCh[2]}, {0, -gammaPolCh[2], 0, 0, 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0], -gammaPolCh[1], 0}, {0, 0, 0, -gammaPolCh[2], 0, 0, 0, -gammaPolCh[1], 2*(2*epsilon + U), 0}, {0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=-1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=2.0654268226283357*^-14 diagvc[{2, 3}] Generating matrix: ham.model..QS_2.3 hamil={{2*epsilon + coefzeta[1, 0] + coefzeta[2, 0], -gammaPolCh[1], 0, 0, gammaPolCh[2], 0}, {-gammaPolCh[1], 3*epsilon + U + coefzeta[2, 0], -t12, 0, 0, gammaPolCh[2]}, {0, -t12, 3*epsilon + U + coefzeta[2, 0], 0, 0, 0}, {0, 0, 0, 3*epsilon + U + coefzeta[1, 0], -t12, 0}, {gammaPolCh[2], 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0], -gammaPolCh[1]}, {0, gammaPolCh[2], 0, 0, -gammaPolCh[1], 2*(2*epsilon + U)}} dim={6, 6} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=5.946632075648495*^-15 diagvc[{3, 2}] Generating matrix: ham.model..QS_3.2 hamil={{3*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, -gammaPolCh[2]}, {-t12, 3*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], -gammaPolCh[1], 0}, {0, -gammaPolCh[1], 4*epsilon + 2*U + coefzeta[2, 0], 0}, {-gammaPolCh[2], 0, 0, 4*epsilon + 2*U + coefzeta[1, 0]}} dim={4, 4} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=1.5265566588595902*^-15 diagvc[{4, 1}] Generating matrix: ham.model..QS_4.1 hamil={{4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.5223148555221072, -0.47032798398385367, -0.4228474249344222, -0.37403911008798874, -0.3695432035054926, -0.36467306560681656, -0.3424176910001162, -0.32616812600422446, -0.32186498974062827, -0.2799001529467592, -0.2735317270722282, -0.2680341674758114, -0.2678807494454387, -0.2529088801917448, -0.24933545572448934, -0.24253246425762048, -0.23143013515795263, -0.2256855905915836, -0.2151038347236623, -0.2013983029937502} Lowest energies (GS shifted):{0., 0.05198687153825354, 0.09946743058768504, 0.14827574543411848, 0.15277165201661463, 0.15764178991529065, 0.179897164521991, 0.19614672951788276, 0.20044986578147894, 0.24241470257534803, 0.248783128449879, 0.25428068804629583, 0.2544341060766685, 0.2694059753303624, 0.27297939979761787, 0.27978239126448673, 0.2908847203641546, 0.2966292649305236, 0.3072110207984449, 0.32091655252835705} Scale factor SCALE(Ninit):3.060418339790368 Lowest energies (shifted and scaled):{0., 0.016986851392942093, 0.03250125294782358, 0.04844950231355463, 0.049918551993476536, 0.051509882771807194, 0.05878188683652757, 0.06409147630820902, 0.06549753776315734, 0.07920966209866358, 0.08129056254019183, 0.08308690506138892, 0.08313703481926484, 0.08802913373889144, 0.08919675988359041, 0.09141965581203883, 0.09504737198251123, 0.09692441751307831, 0.10038203496698696, 0.10486035466325794} makeireducf GENERAL ireducTable: f[0]{} ireducTable: f[1]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} ireducTable: Chop[Expand[komutator[Hselfa /. params, a[#1, #2]]]] & {} s: n_a op.model..QS.n_a nc[a[0, 0], a[1, 0]] + nc[a[0, 1], a[1, 1]] s: SaSd op.model..QS.SaSd (-nc[a[0, 0], d[0, 0], a[1, 0], d[1, 0]] + nc[a[0, 0], d[0, 1], a[1, 0], d[1, 1]] - 2*nc[a[0, 0], d[0, 1], a[1, 1], d[1, 0]] - 2*nc[a[0, 1], d[0, 0], a[1, 0], d[1, 1]] + nc[a[0, 1], d[0, 0], a[1, 1], d[1, 0]] - nc[a[0, 1], d[0, 1], a[1, 1], d[1, 1]])/4 ireducTable: a[]{} ireducTable: Chop[Expand[komutator[Hselfa /. params, a[#1, #2]]]] & {} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.4747`6.127964225214334} {ham, 6.111244`6.061583358323446} {maketable, 9.849521`7.444960103981897} {xi, 0.546549`6.189174097523054} {_, 0} data gammaPol=0.11280576109010586 "Success!"