NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def2ch, NRDOTS=2 COEFCHANNELS:2 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) + coefzeta[2, 0]*(-1 + nc[f[0, 1, 0], f[1, 1, 0]] + nc[f[0, 1, 1], f[1, 1, 1]]) adddots, nrdots=2 params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.2, delta -> 0., t -> 0., gammaPol2 -> 0.09772050238058398*Sqrt[gammaA*thetaCh[1]], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> 0.07978845608028654*Sqrt[gammaA*thetaCh[1]], gammaPolch2 -> 0.09772050238058398*Sqrt[gammaA*thetaCh[2]], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.2, epsilon -> -0.03, Gamma1 -> 0.02, Gamma2 -> 0.03, t12 -> 0.05} NRDOTS:2 CHANNELS:2 basis:{a[], d[], f[0], f[1]} lrchain:{} lrextrarule:{} NROPS:4 Hamiltonian generated. -coefzeta[1, 0] - coefzeta[2, 0] + epsilon*nc[a[0, 0], a[1, 0]] + t12*nc[a[0, 0], d[1, 0]] + gammaPolCh[2]*nc[a[0, 0], f[1, 1, 0]] + epsilon*nc[a[0, 1], a[1, 1]] + t12*nc[a[0, 1], d[1, 1]] + gammaPolCh[2]*nc[a[0, 1], f[1, 1, 1]] + t12*nc[d[0, 0], a[1, 0]] + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + t12*nc[d[0, 1], a[1, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 1, 0], a[1, 0]] + coefzeta[2, 0]*nc[f[0, 1, 0], f[1, 1, 0]] + gammaPolCh[2]*nc[f[0, 1, 1], a[1, 1]] + coefzeta[2, 0]*nc[f[0, 1, 1], f[1, 1, 1]] - U*nc[a[0, 0], a[0, 1], a[1, 0], a[1, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=2.164042561333445 faktor=0.9241962407465939 Generating basis Basis states generated. BASIS NR=256 Basis: basis.model..QS PREC=1000 Tmin=1.*^-8 Tmin=1.*^-8 ==> Nmax=27 DISCNMAX=27 mMAX=80 rho[0]=0.02 pos=0.0020100000000010023 neg=0.001990000000001002 theta=0.039977205507750402470879950496908119338807683305504404848005738950505403439995294215459259254924309427152179186808008439743110747653986519307375416435280966194271347191570348887121571929187087222424821973769519500112633626221235094\ 18432558342120296586605156612811930864966181904860742689498046028197994542801853920074837221087286657513576553259462617739299391286912060542622813320180182188944960047460532401755533553185530259924670339333318174690259766986274540114838385\ 87937323281852490436283282637005712304342753235262741534357209419892351987089409535735398758285227967218173372715472275677809785574367508047270635283993709266362329985611076771728159429850815351012146275122334594742341039689780956015852439\ 86942142441157708354667646325281543368127604473695495803109604408135722866186153638961560120957068819292770633201698326422145044521334026205416508590847335517881179595876031641768516186687932483900639976296897025221169434529385703282932572\ 0572644303086009718281694037518179992377464214559940491928488491356023668`1000. {1, 1.2059859644005295} {2, 1.334618443022703} {3, 1.3339918793729115} {4, 1.3336667537942333} {5, 1.3335010999122132} {6, 1.3334174831369838} {7, 1.3333754750461155} {8, 1.3333544206666008} {9, 1.333343880593097} {10, 1.3333386067998834} {11, 1.3333359679012724} {12, 1.3333346458266828} {13, 1.3333339798836559} {14, 1.3333336371868751} {15, 1.3333334464095141} {16, 1.3333333121683013} {17, 1.3333331673439386} {18, 1.3333329395246247} {19, 1.3333325148007662} {20, 1.3333317618819391} {21, 1.3333309487125309} {22, 1.3333301355431226} {23, 1.3333293223737144} {24, 1.3333285092043061} {25, 1.333327696034898} {26, 1.3333268828654898} {27, 1.3333260696960816} {28, 1.3333252565266733} {29, 1.3333248499419692} {30, 1.3333248499419692} {1, 1.2047314677320065} {2, 1.3319100856806714} {3, 1.3326403181945328} {4, 1.3329912996364766} {5, 1.3331634136200203} {6, 1.3332486451014964} {7, 1.3332910566934617} {8, 1.3333122116262321} {9, 1.3333227761958215} {10, 1.333328054828692} {11, 1.3333306923685295} {12, 1.3333320089660299} {13, 1.333332663265006} {14, 1.3333329825012041} {15, 1.333333126314277} {16, 1.3333331666161565} {17, 1.3333331235591335} {18, 1.3333329756150298} {19, 1.3333326488118673} {20, 1.3333320464297365} {21, 1.3333313941679978} {22, 1.3333307419062594} {23, 1.333330089644521} {24, 1.3333294373827824} {25, 1.333328785121044} {26, 1.3333281328593056} {27, 1.3333274805975672} {28, 1.3333268283358286} {29, 1.3333265022049594} {30, 1.3333265022049594} rho[0]=0.03 pos=0.0029699999999969937 neg=0.0030299999999969934 theta=0.059965808261616581110224976137925216703711493889079300312738152745222235816978971764099040071723915828458832454188379771152794900395275446780791124451029300860831897870383118329886865832102141193669505906063418419844712449094500659\ 44790696250407631623368388114783841198993241728147448605617522679973624900134983458809053801342430938012405471175811531581374932026281447391047270279827714680218287098714941656275889194024444018482397590113570534029922831662045841076017400\ 14053827254312244574056116942497062371392733490201150645912539990565540348727990868172207051559099910264968367269614517494433765107707446879765124389621210475914900727814268101955531448411474981163869857786700418912301377473375339561730269\ 01754189532431817593542198452286356096552411198311274063869636521537281862243782283417093053290940299382513378849763710613966888396585372555883476544659513550367297929624124330955384450718418439935365352471540976917781142518903712264621631\ 5123944281572324425728884560576486300464382181700628239037824863484153465`1000. {1, 1.2038915976154163} {2, 1.330325451909266} {3, 1.3319100856765211} {4, 1.3326403181864745} {5, 1.332991299620595} {6, 1.333163413588436} {7, 1.3332486450385277} {8, 1.333291056567714} {9, 1.3333122113749418} {10, 1.3333227756934405} {11, 1.3333280538241448} {12, 1.3333306903596458} {13, 1.3333320049484398} {14, 1.3333326552300329} {15, 1.3333329664314582} {16, 1.333333094174984} {17, 1.3333331023377675} {18, 1.3333329950025579} {19, 1.3333327185020498} {20, 1.3333321938089338} {21, 1.3333316246183962} {22, 1.3333310554278586} {23, 1.333330486237321} {24, 1.3333299170467834} {25, 1.3333293478562458} {26, 1.3333287786657082} {27, 1.3333282094751706} {28, 1.333327640284633} {29, 1.3333273556893643} {30, 1.3333273556893643} {1, 1.2064666435658506} {2, 1.3357844382861812} {3, 1.3346184430157455} {4, 1.333991879358668} {5, 1.3336667537653595} {6, 1.3335010998540977} {7, 1.3334174830203707} {8, 1.3333754748125064} {9, 1.3333544201990066} {10, 1.3333438796575428} {11, 1.3333386049284321} {12, 1.3333359641579965} {13, 1.3333346383397804} {14, 1.3333339649094782} {15, 1.3333336072381423} {16, 1.333333386511683} {17, 1.3333331923722362} {18, 1.3333329277514576} {19, 1.3333324603392764} {20, 1.3333316434630866} {21, 1.333330762070007} {22, 1.3333298806769274} {23, 1.3333289992838477} {24, 1.333328117890768} {25, 1.3333272364976885} {26, 1.3333263551046088} {27, 1.3333254737115292} {28, 1.3333245923184496} {29, 1.3333241516219099} {30, 1.3333241516219099} Diagonalisation. Discretization checksum [-1] (channel 1): 3.4230898612828078451998011819`10.*^-49 Discretization checksum [-1] (channel 2): 3.4230888332515566909017928426`10.*^-49 BAND="asymode" thetaCh={"0.03997720551", "0.05996580826"} Discretization (channel 1) "xitable" (channel 1) 0.9469884403 0.8457859704 0.4248457969 0.1851965736 0.09044289259 0.04511185138 0.02254547092 0.01127145471 0.005635577969 0.002817768947 0.001408882551 0.0007044409525 0.000352220472 0.0001761102305 0.00008805511677 0.00004402755831 0.00002201377925 0.00001100688966 5.503444805e-6 2.751722438e-6 1.375861197e-6 6.879306185e-7 3.439653021e-7 1.719826517e-7 8.599132487e-8 4.299566246e-8 2.149783099e-8 1.074891551e-8 "zetatable" (channel 1) 0.05363841175 -0.01216612633 -0.02675064228 -0.009612840329 -0.002185217938 -0.000532142145 -0.000145377028 -0.00003678215799 -0.00001081304298 -2.761429219e-6 -8.927645038e-7 -2.304660132e-7 -8.291743122e-8 -2.163842455e-8 -8.572191439e-9 -2.256671656e-9 -9.594901162e-10 -2.540759681e-10 -1.129343218e-10 -3.000941129e-11 -1.367931326e-11 -3.642013321e-12 -1.682645771e-12 -4.485380041e-13 -2.086634384e-13 -5.570214804e-14 -2.59972296e-14 -6.967203404e-15 Precision last xi:966.565009206279 Precision last zeta: 960.7474736519869 Discretization (channel 2) "xitable" (channel 2) 0.9423919232 0.8467579523 0.4256152776 0.1853616264 0.09046504229 0.04511375541 0.02254575358 0.01127143755 0.005635577611 0.002817765574 0.001408882207 0.0007044406998 0.0003522204442 0.0001761102138 0.00008805511494 0.00004402755716 0.00002201377917 0.0000110068895 5.50344484e-6 2.751722349e-6 1.375861217e-6 6.879305687e-7 3.439652964e-7 1.71982647e-7 8.599132428e-8 4.299566216e-8 2.149783096e-8 1.074891549e-8 "zetatable" (channel 2) -0.1072809494 0.02350453772 0.05411478498 0.01934246608 0.00438575874 0.001066595064 0.000291226038 0.00007369614532 0.0000216605948 5.532204184e-6 1.787937064e-6 4.615576163e-7 1.659936402e-7 4.331728326e-8 1.715456696e-8 4.515912338e-9 1.919624822e-9 5.083137548e-10 2.259091509e-10 6.002894612e-11 2.736115011e-11 7.2846435e-12 3.365442621e-12 8.971052051e-13 4.173331954e-13 1.114014871e-13 5.199328218e-14 1.393191403e-14 Precision last xi:966.5334191484113 Precision last zeta: 961.0168359938982 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {2, 2, 27, 15}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, t12, U} thetaCh={"0.03997720551", "0.05996580826"} theta0Ch={"0.0399772055077504", "0.05996580826161658"} gammaPolCh={"0.11280576109010586", "0.13815827735852163"} checkdefinitions[] -> 0.6302136161344889 calcgsenergy[] diagvc[{-4, 1}] Generating matrix: ham.model..QS_-4.1 hamil={{-coefzeta[1, 0] - coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-3, 2}] Generating matrix: ham.model..QS_-3.2 hamil={{-coefzeta[1, 0], 0, 0, gammaPolCh[2]}, {0, -coefzeta[2, 0], gammaPolCh[1], 0}, {0, gammaPolCh[1], epsilon - coefzeta[1, 0] - coefzeta[2, 0], t12}, {gammaPolCh[2], 0, t12, epsilon - coefzeta[1, 0] - coefzeta[2, 0]}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.2833297752544723*^-15 diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0] + coefzeta[2, 0], 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, gammaPolCh[1], 0, 0, 0, gammaPolCh[2], 0, 0, 0}, {0, gammaPolCh[1], epsilon - coefzeta[1, 0], t12, 0, 0, 0, 0, gammaPolCh[2], 0}, {Sqrt[2]*gammaPolCh[2], 0, t12, epsilon - coefzeta[1, 0], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2]}, {0, 0, 0, 0, coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], epsilon - coefzeta[2, 0], t12, Sqrt[2]*gammaPolCh[1], 0, 0}, {0, gammaPolCh[2], 0, 0, 0, t12, epsilon - coefzeta[2, 0], 0, gammaPolCh[1], 0}, {0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0}, {0, 0, gammaPolCh[2], 0, 0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12}, {0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=1.9661727724184976*^-14 diagvc[{-2, 3}] Generating matrix: ham.model..QS_-2.3 hamil={{0, gammaPolCh[1], 0, 0, -gammaPolCh[2], 0}, {gammaPolCh[1], epsilon - coefzeta[1, 0], t12, 0, 0, -gammaPolCh[2]}, {0, t12, epsilon - coefzeta[1, 0], 0, 0, 0}, {0, 0, 0, epsilon - coefzeta[2, 0], t12, 0}, {-gammaPolCh[2], 0, 0, t12, epsilon - coefzeta[2, 0], gammaPolCh[1]}, {0, -gammaPolCh[2], 0, 0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0] - coefzeta[2, 0]}} dim={6, 6} det[vec]=1. 1-abs=0. orthogonality check=4.066191827689636*^-15 diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{coefzeta[2, 0], gammaPolCh[1], 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0}, {gammaPolCh[1], epsilon - coefzeta[1, 0] + coefzeta[2, 0], t12, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, epsilon - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, Sqrt[2]*gammaPolCh[1], epsilon, t12, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[2]/2, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0}, {-(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, t12, epsilon, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0}, {0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2])}, {0, 0, -gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, epsilon, t12, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, -gammaPolCh[2]/2, 0, 0}, {-(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, t12, epsilon, gammaPolCh[1], 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0}, {0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2])}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, epsilon + coefzeta[1, 0] - coefzeta[2, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0}, {0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, t12, epsilon + coefzeta[1, 0] - coefzeta[2, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, -gammaPolCh[2]/2, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon - coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0}, {0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[2, 0], 0, 0, gammaPolCh[1]}, {0, 0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, 0, -gammaPolCh[2]/2, 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon - coefzeta[2, 0], Sqrt[3/2]*gammaPolCh[1], 0}, {0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=-1.0000000000000013 1-abs=-1.3322676295501878*^-15 orthogonality check=8.973395892444488*^-14 diagvc[{-1, 4}] Generating matrix: ham.model..QS_-1.4 hamil={{epsilon, t12, 0, gammaPolCh[2]}, {t12, epsilon, gammaPolCh[1], 0}, {0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0], 0}, {gammaPolCh[2], 0, 0, 2*epsilon - coefzeta[2, 0]}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.192690473634684*^-15 diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[1], epsilon + coefzeta[2, 0], t12, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, epsilon + coefzeta[2, 0], 0, gammaPolCh[1], 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0}, {0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, epsilon + coefzeta[1, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, t12, epsilon + coefzeta[1, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0}, {0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon, Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0}, {0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U, 0, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPolCh[2], 0}, {0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0], -t12, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2]}, {0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0}, {0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], 0, Sqrt[2]*gammaPolCh[1], 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 3*epsilon + U - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U - coefzeta[2, 0], Sqrt[2]*gammaPolCh[1]}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=-1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=8.974637303931984*^-14 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{epsilon + coefzeta[2, 0], t12, 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2], 0, gammaPolCh[2]/Sqrt[6], 0, 0, (2*gammaPolCh[2])/Sqrt[3], 0, 0, 0}, {t12, epsilon + coefzeta[2, 0], gammaPolCh[1], 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0}, {0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0}, {0, 0, 0, epsilon + coefzeta[1, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0}, {0, 0, 0, t12, epsilon + coefzeta[1, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0}, {gammaPolCh[2]/Sqrt[2], 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon, Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2]}, {0, gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U, 0, 0, gammaPolCh[1], 0, 0, 0, 0}, {gammaPolCh[2]/Sqrt[6], 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, gammaPolCh[2]/Sqrt[6]}, {0, 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0], -t12, 0, 0, 0, 0}, {0, 0, gammaPolCh[2], 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0}, {(2*gammaPolCh[2])/Sqrt[3], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon, 0, 0, (2*gammaPolCh[2])/Sqrt[3]}, {0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + coefzeta[1, 0] - coefzeta[2, 0], -gammaPolCh[1], 0}, {0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 3*epsilon + U - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2], 0, gammaPolCh[2]/Sqrt[6], 0, 0, (2*gammaPolCh[2])/Sqrt[3], 0, -t12, 3*epsilon + U - coefzeta[2, 0]}} dim={15, 15} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=4.638547575555596*^-14 diagvc[{0, 5}] Generating matrix: ham.model..QS_0.5 hamil={{2*epsilon}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{epsilon + coefzeta[1, 0] + coefzeta[2, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0}, {t12, epsilon + coefzeta[1, 0] + coefzeta[2, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-gammaPolCh[1], 0, 2*epsilon + U + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0}, {0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon + coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, 0, gammaPolCh[2]/2, 0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0}, {0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[2, 0], 0, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon + coefzeta[2, 0], Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, gammaPolCh[2]/2, 0, 0, 0}, {0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + U + coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0}, {-(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0}, {0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0], 0, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0}, {0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 3*epsilon + U, -t12, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2])}, {0, 0, 0, gammaPolCh[2]/2, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {-(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + coefzeta[1, 0], -gammaPolCh[1], 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0}, {0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 3*epsilon + U, -t12, 0, 0, -(Sqrt[3/2]*gammaPolCh[2])}, {0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, gammaPolCh[2]/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -t12, 3*epsilon + U, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 3*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], -gammaPolCh[1]}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, -gammaPolCh[1], 4*epsilon + 2*U - coefzeta[2, 0]}} dim={20, 20} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=8.300504110003021*^-14 diagvc[{1, 4}] Generating matrix: ham.model..QS_1.4 hamil={{2*epsilon + coefzeta[2, 0], 0, 0, -gammaPolCh[2]}, {0, 2*epsilon + coefzeta[1, 0], -gammaPolCh[1], 0}, {0, -gammaPolCh[1], 3*epsilon + U, -t12}, {-gammaPolCh[2], 0, -t12, 3*epsilon + U}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=3.712308238590367*^-15 diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0}, {Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0, 0, -gammaPolCh[2], 0, 0}, {0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], 0, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0}, {0, -gammaPolCh[1], 0, 3*epsilon + U + coefzeta[2, 0], -t12, 0, 0, 0, -gammaPolCh[2], 0}, {0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U + coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 3*epsilon + U + coefzeta[1, 0], -t12, 0, Sqrt[2]*gammaPolCh[2]}, {0, -gammaPolCh[2], 0, 0, 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0], -gammaPolCh[1], 0}, {0, 0, 0, -gammaPolCh[2], 0, 0, 0, -gammaPolCh[1], 2*(2*epsilon + U), 0}, {0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=-1.0000000000000009 1-abs=-8.881784197001252*^-16 orthogonality check=1.815355591544554*^-14 diagvc[{2, 3}] Generating matrix: ham.model..QS_2.3 hamil={{2*epsilon + coefzeta[1, 0] + coefzeta[2, 0], -gammaPolCh[1], 0, 0, gammaPolCh[2], 0}, {-gammaPolCh[1], 3*epsilon + U + coefzeta[2, 0], -t12, 0, 0, gammaPolCh[2]}, {0, -t12, 3*epsilon + U + coefzeta[2, 0], 0, 0, 0}, {0, 0, 0, 3*epsilon + U + coefzeta[1, 0], -t12, 0}, {gammaPolCh[2], 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0], -gammaPolCh[1]}, {0, gammaPolCh[2], 0, 0, -gammaPolCh[1], 2*(2*epsilon + U)}} dim={6, 6} det[vec]=-1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=5.620504062164855*^-15 diagvc[{3, 2}] Generating matrix: ham.model..QS_3.2 hamil={{3*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, -gammaPolCh[2]}, {-t12, 3*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], -gammaPolCh[1], 0}, {0, -gammaPolCh[1], 4*epsilon + 2*U + coefzeta[2, 0], 0}, {-gammaPolCh[2], 0, 0, 4*epsilon + 2*U + coefzeta[1, 0]}} dim={4, 4} det[vec]=-1. 1-abs=0. orthogonality check=4.1494585545365226*^-15 diagvc[{4, 1}] Generating matrix: ham.model..QS_4.1 hamil={{4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.5223260331067486, -0.4703457045741214, -0.42286541903860464, -0.37406161796353377, -0.36956894737704826, -0.36469130934592375, -0.342423681227655, -0.32616114458999046, -0.3218807766691138, -0.2799136125246867, -0.27353110546742015, -0.26805707652070415, -0.2678815642615534, -0.25290798499761635, -0.24935465031285223, -0.2425452767107409, -0.23143860377063297, -0.22570615032368163, -0.21511988211246863, -0.20140378272919762} Lowest energies (GS shifted):{0., 0.05198032853262724, 0.099460614068144, 0.14826441514321487, 0.15275708572970037, 0.15763472376082488, 0.17990235187909365, 0.19616488851675817, 0.20044525643763483, 0.24241242058206192, 0.24879492763932848, 0.2542689565860445, 0.2544444688451952, 0.2694180481091323, 0.27297138279389643, 0.27978075639600775, 0.29088742933611567, 0.296619882783067, 0.30720615099428, 0.320922250377551} Scale factor SCALE(Ninit):2.164042561333445 Lowest energies (shifted and scaled):{0., 0.024020012111313504, 0.04596056281206323, 0.06851270755592577, 0.07058876218939712, 0.07284270955544107, 0.08313253865406464, 0.0906474262668313, 0.09262537623757455, 0.11201832390611194, 0.11496766842054412, 0.1174972069076906, 0.11757831079274662, 0.12449757362587252, 0.12613956290475928, 0.12928616164721446, 0.1344185343364393, 0.13706749029940293, 0.14195938494157204, 0.14829756868543492} makeireducf GENERAL ireducTable: f[0]{} ireducTable: f[1]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} ireducTable: Chop[Expand[komutator[Hselfa /. params, a[#1, #2]]]] & {} s: n_a op.model..QS.n_a nc[a[0, 0], a[1, 0]] + nc[a[0, 1], a[1, 1]] s: SaSd op.model..QS.SaSd (-nc[a[0, 0], d[0, 0], a[1, 0], d[1, 0]] + nc[a[0, 0], d[0, 1], a[1, 0], d[1, 1]] - 2*nc[a[0, 0], d[0, 1], a[1, 1], d[1, 0]] - 2*nc[a[0, 1], d[0, 0], a[1, 0], d[1, 1]] + nc[a[0, 1], d[0, 0], a[1, 1], d[1, 0]] - nc[a[0, 1], d[0, 1], a[1, 1], d[1, 1]])/4 ireducTable: a[]{} ireducTable: Chop[Expand[komutator[Hselfa /. params, a[#1, #2]]]] & {} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.470328`6.123945827831077} {ham, 6.10563`6.0611842170385275} {maketable, 9.941622`7.449002239883442} {xi, 0.508144`6.157531795432171} {_, 0} data gammaPol=0.11280576109010586 "Success!"