NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def2ch, NRDOTS=2 COEFCHANNELS:2 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) + coefzeta[2, 0]*(-1 + nc[f[0, 1, 0], f[1, 1, 0]] + nc[f[0, 1, 1], f[1, 1, 1]]) adddots, nrdots=2 params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.2, delta -> 0., t -> 0., gammaPol2 -> 0.09772050238058398*Sqrt[gammaA*thetaCh[1]], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> 0.07978845608028654*Sqrt[gammaA*thetaCh[1]], gammaPolch2 -> 0.09772050238058398*Sqrt[gammaA*thetaCh[2]], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.2, epsilon -> -0.03, Gamma1 -> 0.02, Gamma2 -> 0.03, t12 -> 0.05} NRDOTS:2 CHANNELS:2 basis:{a[], d[], f[0], f[1]} lrchain:{} lrextrarule:{} NROPS:4 Hamiltonian generated. -coefzeta[1, 0] - coefzeta[2, 0] + epsilon*nc[a[0, 0], a[1, 0]] + t12*nc[a[0, 0], d[1, 0]] + gammaPolCh[2]*nc[a[0, 0], f[1, 1, 0]] + epsilon*nc[a[0, 1], a[1, 1]] + t12*nc[a[0, 1], d[1, 1]] + gammaPolCh[2]*nc[a[0, 1], f[1, 1, 1]] + t12*nc[d[0, 0], a[1, 0]] + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + t12*nc[d[0, 1], a[1, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 1, 0], a[1, 0]] + coefzeta[2, 0]*nc[f[0, 1, 0], f[1, 1, 0]] + gammaPolCh[2]*nc[f[0, 1, 1], a[1, 1]] + coefzeta[2, 0]*nc[f[0, 1, 1], f[1, 1, 1]] - U*nc[a[0, 0], a[0, 1], a[1, 0], a[1, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.530209169895184 faktor=1.307010857958063 Generating basis Basis states generated. BASIS NR=256 Basis: basis.model..QS PREC=1000 Tmin=1.*^-8 Tmin=1.*^-8 ==> Nmax=27 DISCNMAX=27 mMAX=80 rho[0]=0.02 pos=0.0020100000000010023 neg=0.001990000000001002 theta=0.039977205507750402470879950496908119338807683305504404848005738950505403439995294215459259254924309427152179186808008439743110747653986519307375416435280966194271347191570348887121571929187087222424821973769519500112633626221235094\ 18432558342120296586605156612811930864966181904860742689498046028197994542801853920074837221087286657513576553259462617739299391286912060542622813320180182188944960047460532401755533553185530259924670339333318174690259766986274540114838385\ 87937323281852490436283282637005712304342753235262741534357209419892351987089409535735398758285227967218173372715472275677809785574367508047270635283993709266362329985611076771728159429850815351012146275122334594742341039689780956015852439\ 86942142441157708354667646325281543368127604473695495803109604408135722866186153638961560120957068819292770633201698326422145044521334026205416508590847335517881179595876031641768516186687932483900639976296897025221169434529385703282932572\ 0572644303086009718281694037518179992377464214559940491928488491356023668`1000. {1, 1.2987927749767647} {2, 1.3344223938092015} {3, 1.333889303162652} {4, 1.3336142683207335} {5, 1.3334745499929854} {6, 1.3334041303635058} {7, 1.3333687790533757} {8, 1.3333510677024516} {9, 1.3333422027665567} {10, 1.3333377673492428} {11, 1.333335547639564} {12, 1.3333344347577138} {13, 1.3333338725066} {14, 1.3333335798216275} {15, 1.3333334103755614} {16, 1.33333327944918} {17, 1.3333331215802386} {18, 1.333332857834512} {19, 1.3333323563391928} {20, 1.333331558589587} {21, 1.3333307454201786} {22, 1.3333299322507706} {23, 1.3333291190813625} {24, 1.333328305911954} {25, 1.333327492742546} {26, 1.3333266795731376} {27, 1.3333258664037295} {28, 1.3333250532343215} {29, 1.3333248499419692} {30, 1.3333248499419692} {1, 1.2957773199196934} {2, 1.3321466668930493} {3, 1.3327529946659042} {4, 1.333046308127722} {5, 1.3331905941511009} {6, 1.333262155489604} {7, 1.3332977920286069} {8, 1.3333155743044482} {9, 1.3333244562078659} {10, 1.3333288943396921} {11, 1.3333311116732887} {12, 1.3333322178517018} {13, 1.3333327662081076} {14, 1.3333330309817133} {15, 1.3333331445745498} {16, 1.3333331637868546} {17, 1.3333330982257408} {18, 1.3333329151108884} {19, 1.333332522884913} {20, 1.3333318833643018} {21, 1.3333312311025631} {22, 1.3333305788408247} {23, 1.3333299265790863} {24, 1.333329274317348} {25, 1.3333286220556093} {26, 1.333327969793871} {27, 1.3333273175321325} {28, 1.3333266652703941} {29, 1.3333265022049594} {30, 1.3333265022049594} rho[0]=0.03 pos=0.0029699999999969937 neg=0.0030299999999969934 theta=0.059965808261616581110224976137925216703711493889079300312738152745222235816978971764099040071723915828458832454188379771152794900395275446780791124451029300860831897870383118329886865832102141193669505906063418419844712449094500659\ 44790696250407631623368388114783841198993241728147448605617522679973624900134983458809053801342430938012405471175811531581374932026281447391047270279827714680218287098714941656275889194024444018482397590113570534029922831662045841076017400\ 14053827254312244574056116942497062371392733490201150645912539990565540348727990868172207051559099910264968367269614517494433765107707446879765124389621210475914900727814268101955531448411474981163869857786700418912301377473375339561730269\ 01754189532431817593542198452286356096552411198311274063869636521537281862243782283417093053290940299382513378849763710613966888396585372555883476544659513550367297929624124330955384450718418439935365352471540976917781142518903712264621631\ 5123944281572324425728884560576486300464382181700628239037824863484153465`1000. {1, 1.293817176586325} {2, 1.3308488203535722} {3, 1.3321466668881685} {4, 1.3327529946563577} {5, 1.3330463081088666} {6, 1.3331905941135753} {7, 1.3332621554147515} {8, 1.3332977918791071} {9, 1.3333155740056521} {10, 1.3333244556104669} {11, 1.3333288931451162} {12, 1.3333311092843496} {13, 1.333332213073992} {14, 1.3333327566529023} {15, 1.3333330118714946} {16, 1.3333331063543088} {17, 1.3333330873465814} {18, 1.3333329453453784} {19, 1.3333326093503413} {20, 1.3333320515112994} {21, 1.3333314823207618} {22, 1.3333309131302242} {23, 1.3333303439396864} {24, 1.333329774749149} {25, 1.3333292055586115} {26, 1.3333286363680739} {27, 1.3333280671775363} {28, 1.3333274979869987} {29, 1.3333273556893641} {30, 1.3333273556893641} {1, 1.2999767100953428} {2, 1.3354253176832709} {3, 1.3344223938008823} {4, 1.3338893031456454} {5, 1.3336142682863408} {6, 1.3334745499237979} {7, 1.333404130224757} {8, 1.3333687787754989} {9, 1.333351067146314} {10, 1.333342201653928} {11, 1.333337765123634} {12, 1.3333355431879703} {13, 1.3333344258541664} {14, 1.3333338546991345} {15, 1.3333335442063154} {16, 1.3333333391445592} {17, 1.3333331369867787} {18, 1.3333328366550798} {19, 1.333332287983816} {20, 1.3333314231148166} {21, 1.3333305417217372} {22, 1.3333296603286575} {23, 1.3333287789355779} {24, 1.333327897542498} {25, 1.3333270161494186} {26, 1.333326134756339} {27, 1.3333252533632594} {28, 1.33332437197018} {29, 1.3333241516219099} {30, 1.3333241516219099} Diagonalisation. Discretization checksum [-1] (channel 1): 2.4204900535239917254847152548`10.*^-49 Discretization checksum [-1] (channel 2): 2.4204893265961227625898313537`10.*^-49 BAND="asymode" thetaCh={"0.03997720551", "0.05996580826"} Discretization (channel 1) "xitable" (channel 1) 0.8075916459 0.5538950861 0.268893547 0.1280801144 0.06376081432 0.03187847118 0.01593955922 0.00796981525 0.003984916947 0.001992458954 0.0009962298274 0.0004981149166 0.0002490574767 0.0001245287382 0.00006226437016 0.0000311321851 0.00001556609258 7.783046329e-6 3.891523137e-6 1.945761603e-6 9.728807838e-7 4.864404042e-7 2.432201975e-7 1.216100989e-7 6.08050488e-8 3.040252442e-8 1.520126202e-8 7.600631021e-9 "zetatable" (channel 1) 0.04571620601 -0.02248865504 -0.01470198361 -0.00425898028 -0.001086049114 -0.0002728541819 -0.00007594598212 -0.00001926733121 -5.779963227e-6 -1.479644169e-6 -4.902675489e-7 -1.268922858e-7 -4.676705877e-8 -1.223228072e-8 -4.938552785e-9 -1.302199191e-9 -5.606097782e-10 -1.485981098e-10 -6.65320861e-11 -1.768907164e-11 -8.095125308e-12 -2.155961229e-12 -9.981162591e-13 -2.661385348e-13 -1.239347443e-13 -3.310335972e-14 -1.545554221e-14 -4.150590499e-15 Precision last xi:966.4751085169161 Precision last zeta: 960.5831393434867 Discretization (channel 2) "xitable" (channel 2) 0.8036554039 0.5550697738 0.2692444532 0.1281344387 0.06376846907 0.03187902004 0.01593964843 0.00796980004 0.003984915858 0.00199245715 0.0009962296381 0.000498114788 0.0002490574625 0.0001245287297 0.00006226436926 0.00003113218448 0.00001556609257 7.783046206e-6 3.891523176e-6 1.945761519e-6 9.728807924e-7 4.864403718e-7 2.432201933e-7 1.216100965e-7 6.08050485e-8 3.040252427e-8 1.520126201e-8 7.600631013e-9 "zetatable" (channel 2) -0.09143855605 0.04449904533 0.0297334654 0.008561971723 0.00217802447 0.0005469288567 0.0001521822127 0.00003861480523 0.00001158074629 2.964802591e-6 9.81944522e-7 2.541468663e-7 9.362569788e-8 2.448776748e-8 9.882938865e-9 2.605866337e-9 1.121587508e-9 2.972884681e-10 1.330872475e-10 3.538389965e-11 1.619168314e-11 4.312267727e-12 1.996316589e-12 5.322907978e-13 2.478721128e-13 6.620368134e-14 3.090992596e-14 8.299042522e-15 Precision last xi:966.4437456374632 Precision last zeta: 960.8526946535022 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {2, 2, 27, 15}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, t12, U} thetaCh={"0.03997720551", "0.05996580826"} theta0Ch={"0.0399772055077504", "0.05996580826161658"} gammaPolCh={"0.11280576109010586", "0.13815827735852163"} checkdefinitions[] -> 0.6381338037621662 calcgsenergy[] diagvc[{-4, 1}] Generating matrix: ham.model..QS_-4.1 hamil={{-coefzeta[1, 0] - coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-3, 2}] Generating matrix: ham.model..QS_-3.2 hamil={{-coefzeta[1, 0], 0, 0, gammaPolCh[2]}, {0, -coefzeta[2, 0], gammaPolCh[1], 0}, {0, gammaPolCh[1], epsilon - coefzeta[1, 0] - coefzeta[2, 0], t12}, {gammaPolCh[2], 0, t12, epsilon - coefzeta[1, 0] - coefzeta[2, 0]}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.2412627309620348*^-15 diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0] + coefzeta[2, 0], 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, gammaPolCh[1], 0, 0, 0, gammaPolCh[2], 0, 0, 0}, {0, gammaPolCh[1], epsilon - coefzeta[1, 0], t12, 0, 0, 0, 0, gammaPolCh[2], 0}, {Sqrt[2]*gammaPolCh[2], 0, t12, epsilon - coefzeta[1, 0], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2]}, {0, 0, 0, 0, coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], epsilon - coefzeta[2, 0], t12, Sqrt[2]*gammaPolCh[1], 0, 0}, {0, gammaPolCh[2], 0, 0, 0, t12, epsilon - coefzeta[2, 0], 0, gammaPolCh[1], 0}, {0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0}, {0, 0, gammaPolCh[2], 0, 0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12}, {0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=1.0000000000000009 1-abs=-8.881784197001252*^-16 orthogonality check=1.8732391126544817*^-14 diagvc[{-2, 3}] Generating matrix: ham.model..QS_-2.3 hamil={{0, gammaPolCh[1], 0, 0, -gammaPolCh[2], 0}, {gammaPolCh[1], epsilon - coefzeta[1, 0], t12, 0, 0, -gammaPolCh[2]}, {0, t12, epsilon - coefzeta[1, 0], 0, 0, 0}, {0, 0, 0, epsilon - coefzeta[2, 0], t12, 0}, {-gammaPolCh[2], 0, 0, t12, epsilon - coefzeta[2, 0], gammaPolCh[1]}, {0, -gammaPolCh[2], 0, 0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0] - coefzeta[2, 0]}} dim={6, 6} det[vec]=1. 1-abs=0. orthogonality check=5.918876500032866*^-15 diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{coefzeta[2, 0], gammaPolCh[1], 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0}, {gammaPolCh[1], epsilon - coefzeta[1, 0] + coefzeta[2, 0], t12, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, epsilon - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, Sqrt[2]*gammaPolCh[1], epsilon, t12, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[2]/2, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0}, {-(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, t12, epsilon, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0}, {0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2])}, {0, 0, -gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, epsilon, t12, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, -gammaPolCh[2]/2, 0, 0}, {-(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, t12, epsilon, gammaPolCh[1], 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0}, {0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2])}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, epsilon + coefzeta[1, 0] - coefzeta[2, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0}, {0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, t12, epsilon + coefzeta[1, 0] - coefzeta[2, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, -gammaPolCh[2]/2, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon - coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0}, {0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[2, 0], 0, 0, gammaPolCh[1]}, {0, 0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, 0, -gammaPolCh[2]/2, 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon - coefzeta[2, 0], Sqrt[3/2]*gammaPolCh[1], 0}, {0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=1.0000000000000007 1-abs=-6.661338147750939*^-16 orthogonality check=8.430569068372529*^-14 diagvc[{-1, 4}] Generating matrix: ham.model..QS_-1.4 hamil={{epsilon, t12, 0, gammaPolCh[2]}, {t12, epsilon, gammaPolCh[1], 0}, {0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0], 0}, {gammaPolCh[2], 0, 0, 2*epsilon - coefzeta[2, 0]}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.9004576518332215*^-15 diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[1], epsilon + coefzeta[2, 0], t12, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, epsilon + coefzeta[2, 0], 0, gammaPolCh[1], 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0}, {0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, epsilon + coefzeta[1, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, t12, epsilon + coefzeta[1, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0}, {0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon, Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0}, {0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U, 0, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPolCh[2], 0}, {0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0], -t12, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2]}, {0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0}, {0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], 0, Sqrt[2]*gammaPolCh[1], 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 3*epsilon + U - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U - coefzeta[2, 0], Sqrt[2]*gammaPolCh[1]}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=-1. 1-abs=0. orthogonality check=8.305469755953004*^-14 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{epsilon + coefzeta[2, 0], t12, 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2], 0, gammaPolCh[2]/Sqrt[6], 0, 0, (2*gammaPolCh[2])/Sqrt[3], 0, 0, 0}, {t12, epsilon + coefzeta[2, 0], gammaPolCh[1], 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0}, {0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0}, {0, 0, 0, epsilon + coefzeta[1, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0}, {0, 0, 0, t12, epsilon + coefzeta[1, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0}, {gammaPolCh[2]/Sqrt[2], 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon, Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2]}, {0, gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U, 0, 0, gammaPolCh[1], 0, 0, 0, 0}, {gammaPolCh[2]/Sqrt[6], 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, gammaPolCh[2]/Sqrt[6]}, {0, 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0], -t12, 0, 0, 0, 0}, {0, 0, gammaPolCh[2], 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0}, {(2*gammaPolCh[2])/Sqrt[3], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon, 0, 0, (2*gammaPolCh[2])/Sqrt[3]}, {0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + coefzeta[1, 0] - coefzeta[2, 0], -gammaPolCh[1], 0}, {0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 3*epsilon + U - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2], 0, gammaPolCh[2]/Sqrt[6], 0, 0, (2*gammaPolCh[2])/Sqrt[3], 0, -t12, 3*epsilon + U - coefzeta[2, 0]}} dim={15, 15} det[vec]=-1. 1-abs=0. orthogonality check=4.504822079601234*^-14 diagvc[{0, 5}] Generating matrix: ham.model..QS_0.5 hamil={{2*epsilon}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{epsilon + coefzeta[1, 0] + coefzeta[2, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0}, {t12, epsilon + coefzeta[1, 0] + coefzeta[2, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-gammaPolCh[1], 0, 2*epsilon + U + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0}, {0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon + coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, 0, gammaPolCh[2]/2, 0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0}, {0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[2, 0], 0, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon + coefzeta[2, 0], Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, gammaPolCh[2]/2, 0, 0, 0}, {0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + U + coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0}, {-(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0}, {0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0], 0, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0}, {0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 3*epsilon + U, -t12, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2])}, {0, 0, 0, gammaPolCh[2]/2, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {-(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + coefzeta[1, 0], -gammaPolCh[1], 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0}, {0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 3*epsilon + U, -t12, 0, 0, -(Sqrt[3/2]*gammaPolCh[2])}, {0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, gammaPolCh[2]/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -t12, 3*epsilon + U, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 3*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], -gammaPolCh[1]}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, -gammaPolCh[1], 4*epsilon + 2*U - coefzeta[2, 0]}} dim={20, 20} det[vec]=-1.0000000000000009 1-abs=-8.881784197001252*^-16 orthogonality check=9.45315814897805*^-14 diagvc[{1, 4}] Generating matrix: ham.model..QS_1.4 hamil={{2*epsilon + coefzeta[2, 0], 0, 0, -gammaPolCh[2]}, {0, 2*epsilon + coefzeta[1, 0], -gammaPolCh[1], 0}, {0, -gammaPolCh[1], 3*epsilon + U, -t12}, {-gammaPolCh[2], 0, -t12, 3*epsilon + U}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.5126788710517758*^-15 diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0}, {Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0, 0, -gammaPolCh[2], 0, 0}, {0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], 0, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0}, {0, -gammaPolCh[1], 0, 3*epsilon + U + coefzeta[2, 0], -t12, 0, 0, 0, -gammaPolCh[2], 0}, {0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U + coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 3*epsilon + U + coefzeta[1, 0], -t12, 0, Sqrt[2]*gammaPolCh[2]}, {0, -gammaPolCh[2], 0, 0, 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0], -gammaPolCh[1], 0}, {0, 0, 0, -gammaPolCh[2], 0, 0, 0, -gammaPolCh[1], 2*(2*epsilon + U), 0}, {0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.9433514178305092*^-14 diagvc[{2, 3}] Generating matrix: ham.model..QS_2.3 hamil={{2*epsilon + coefzeta[1, 0] + coefzeta[2, 0], -gammaPolCh[1], 0, 0, gammaPolCh[2], 0}, {-gammaPolCh[1], 3*epsilon + U + coefzeta[2, 0], -t12, 0, 0, gammaPolCh[2]}, {0, -t12, 3*epsilon + U + coefzeta[2, 0], 0, 0, 0}, {0, 0, 0, 3*epsilon + U + coefzeta[1, 0], -t12, 0}, {gammaPolCh[2], 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0], -gammaPolCh[1]}, {0, gammaPolCh[2], 0, 0, -gammaPolCh[1], 2*(2*epsilon + U)}} dim={6, 6} det[vec]=1. 1-abs=0. orthogonality check=5.856426454897701*^-15 diagvc[{3, 2}] Generating matrix: ham.model..QS_3.2 hamil={{3*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, -gammaPolCh[2]}, {-t12, 3*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], -gammaPolCh[1], 0}, {0, -gammaPolCh[1], 4*epsilon + 2*U + coefzeta[2, 0], 0}, {-gammaPolCh[2], 0, 0, 4*epsilon + 2*U + coefzeta[1, 0]}} dim={4, 4} det[vec]=-0.9999999999999998 1-abs=2.220446049250313*^-16 orthogonality check=2.4980018054066022*^-15 diagvc[{4, 1}] Generating matrix: ham.model..QS_4.1 hamil={{4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.5155063708701988, -0.45883144540083726, -0.4117022521217016, -0.3600231690584229, -0.35282941847877103, -0.3526723259725796, -0.3390415795334285, -0.3310267163065472, -0.311164977337417, -0.2738082970787197, -0.27180179984800457, -0.2670102244797044, -0.25375869070015983, -0.25365824219251104, -0.23700177267399283, -0.2347973352796494, -0.2268739853839745, -0.2124638698196303, -0.20476408272632915, -0.1977881349564533} Lowest energies (GS shifted):{0., 0.05667492546936154, 0.10380411874849721, 0.15548320181177588, 0.16267695239142776, 0.1628340448976192, 0.1764647913367703, 0.18447965456365162, 0.2043413935327818, 0.24169807379147912, 0.24370457102219423, 0.2484961463904944, 0.26174768017003897, 0.26184812867768775, 0.278504598196206, 0.2807090355905494, 0.2886323854862243, 0.3030425010505685, 0.3107422881438696, 0.3177182359137455} Scale factor SCALE(Ninit):1.530209169895184 Lowest energies (shifted and scaled):{0., 0.03703737148120975, 0.067836555152527, 0.10160911649903794, 0.1063102715575615, 0.10641293236320952, 0.11532069916223135, 0.1205584557935227, 0.13353821003881367, 0.15795100339650617, 0.1592622602300099, 0.16239358074655624, 0.17105353001378765, 0.17111917365886897, 0.1820042669168444, 0.1834448787218922, 0.1886228308944162, 0.19803991964793038, 0.20307177231538534, 0.20763059205527337} makeireducf GENERAL ireducTable: f[0]{} ireducTable: f[1]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} ireducTable: Chop[Expand[komutator[Hselfa /. params, a[#1, #2]]]] & {} s: n_a op.model..QS.n_a nc[a[0, 0], a[1, 0]] + nc[a[0, 1], a[1, 1]] s: SaSd op.model..QS.SaSd (-nc[a[0, 0], d[0, 0], a[1, 0], d[1, 0]] + nc[a[0, 0], d[0, 1], a[1, 0], d[1, 1]] - 2*nc[a[0, 0], d[0, 1], a[1, 1], d[1, 0]] - 2*nc[a[0, 1], d[0, 0], a[1, 0], d[1, 1]] + nc[a[0, 1], d[0, 0], a[1, 1], d[1, 0]] - nc[a[0, 1], d[0, 1], a[1, 1], d[1, 1]])/4 ireducTable: a[]{} ireducTable: Chop[Expand[komutator[Hselfa /. params, a[#1, #2]]]] & {} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.478627`6.131542187606793} {ham, 6.302121`6.074940471762537} {maketable, 10.242695`7.461959234280083} {xi, 0.488776`6.140654866418974} {_, 0} data gammaPol=0.11280576109010586 "Success!"