NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.251 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module ../model.m def2ch, NRDOTS=2 COEFCHANNELS:2 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) + coefzeta[2, 0]*(-1 + nc[f[0, 1, 0], f[1, 1, 0]] + nc[f[0, 1, 1], f[1, 1, 1]]) adddots, nrdots=2 params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.2, delta -> 0., t -> 0., gammaPol2 -> 0.09772050238058398*Sqrt[gammaA*thetaCh[1]], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> 0.07978845608028654*Sqrt[gammaA*thetaCh[1]], gammaPolch2 -> 0.09772050238058398*Sqrt[gammaA*thetaCh[2]], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.2, epsilon -> -0.03, Gamma1 -> 0.02, Gamma2 -> 0.03, t12 -> 0.05} NRDOTS:2 CHANNELS:2 basis:{a[], d[], f[0], f[1]} lrchain:{} lrextrarule:{} NROPS:4 Hamiltonian generated. -coefzeta[1, 0] - coefzeta[2, 0] + epsilon*nc[a[0, 0], a[1, 0]] + t12*nc[a[0, 0], d[1, 0]] + gammaPolCh[2]*nc[a[0, 0], f[1, 1, 0]] + epsilon*nc[a[0, 1], a[1, 1]] + t12*nc[a[0, 1], d[1, 1]] + gammaPolCh[2]*nc[a[0, 1], f[1, 1, 1]] + t12*nc[d[0, 0], a[1, 0]] + epsilon*nc[d[0, 0], d[1, 0]] + gammaPolCh[1]*nc[d[0, 0], f[1, 0, 0]] + t12*nc[d[0, 1], a[1, 1]] + epsilon*nc[d[0, 1], d[1, 1]] + gammaPolCh[1]*nc[d[0, 1], f[1, 0, 1]] + gammaPolCh[1]*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPolCh[1]*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] + gammaPolCh[2]*nc[f[0, 1, 0], a[1, 0]] + coefzeta[2, 0]*nc[f[0, 1, 0], f[1, 1, 0]] + gammaPolCh[2]*nc[f[0, 1, 1], a[1, 1]] + coefzeta[2, 0]*nc[f[0, 1, 1], f[1, 1, 1]] - U*nc[a[0, 0], a[0, 1], a[1, 0], a[1, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0820212806667224 faktor=1.8483924814931878 Generating basis Basis states generated. BASIS NR=256 Basis: basis.model..QS PREC=1000 Tmin=1.*^-8 Tmin=1.*^-8 ==> Nmax=26 DISCNMAX=26 mMAX=80 rho[0]=0.02 pos=0.0020100000000010023 neg=0.001990000000001002 theta=0.039977205507750402470879950496908119338807683305504404848005738950505403439995294215459259254924309427152179186808008439743110747653986519307375416435280966194271347191570348887121571929187087222424821973769519500112633626221235094\ 18432558342120296586605156612811930864966181904860742689498046028197994542801853920074837221087286657513576553259462617739299391286912060542622813320180182188944960047460532401755533553185530259924670339333318174690259766986274540114838385\ 87937323281852490436283282637005712304342753235262741534357209419892351987089409535735398758285227967218173372715472275677809785574367508047270635283993709266362329985611076771728159429850815351012146275122334594742341039689780956015852439\ 86942142441157708354667646325281543368127604473695495803109604408135722866186153638961560120957068819292770633201698326422145044521334026205416508590847335517881179595876031641768516186687932483900639976296897025221169434529385703282932572\ 0572644303086009718281694037518179992377464214559940491928488491356023668`1000. {1, 1.335113145969549} {2, 1.334255156731903} {3, 1.3338024139007132} {4, 1.3335699700547643} {5, 1.3334521827460784} {6, 1.3333928915961009} {7, 1.3333631457778916} {8, 1.3333482475224583} {9, 1.3333407916702849} {10, 1.333337061310353} {11, 1.3333351940193374} {12, 1.3333342568412556} {13, 1.333333781359496} {14, 1.333333529876273} {15, 1.3333333766607771} {16, 1.333333245107932} {17, 1.3333330694420038} {18, 1.3333327618301931} {19, 1.333332168466643} {20, 1.333331355297235} {21, 1.3333305421278268} {22, 1.3333297289584185} {23, 1.3333289157890102} {24, 1.3333281026196022} {25, 1.333327289450194} {26, 1.3333264762807857} {27, 1.3333256631113775} {28, 1.3333248499419692} {29, 1.3333248499419692} {30, 1.3333248499419692} {1, 1.3312731342401585} {2, 1.332342528210977} {3, 1.3328470236348118} {4, 1.3330923902917522} {5, 1.3332134072907627} {6, 1.3332735056900913} {7, 1.33330345308987} {8, 1.3333184012863815} {9, 1.3333258687156362} {10, 1.3333296001534922} {11, 1.333331464081295} {12, 1.3333323931532113} {13, 1.3333328520776893} {14, 1.3333330703601136} {15, 1.3333331571524596} {16, 1.333333155853604} {17, 1.3333330658147882} {18, 1.3333328420167812} {19, 1.3333323725606057} {20, 1.333331720298867} {21, 1.3333310680371286} {22, 1.3333304157753902} {23, 1.3333297635136518} {24, 1.3333291112519132} {25, 1.3333284589901748} {26, 1.3333278067284364} {27, 1.333327154466698} {28, 1.3333265022049594} {29, 1.3333265022049594} {30, 1.3333265022049594} rho[0]=0.03 pos=0.0029699999999969937 neg=0.0030299999999969934 theta=0.059965808261616581110224976137925216703711493889079300312738152745222235816978971764099040071723915828458832454188379771152794900395275446780791124451029300860831897870383118329886865832102141193669505906063418419844712449094500659\ 44790696250407631623368388114783841198993241728147448605617522679973624900134983458809053801342430938012405471175811531581374932026281447391047270279827714680218287098714941656275889194024444018482397590113570534029922831662045841076017400\ 14053827254312244574056116942497062371392733490201150645912539990565540348727990868172207051559099910264968367269614517494433765107707446879765124389621210475914900727814268101955531448411474981163869857786700418912301377473375339561730269\ 01754189532431817593542198452286356096552411198311274063869636521537281862243782283417093053290940299382513378849763710613966888396585372555883476544659513550367297929624124330955384450718418439935365352471540976917781142518903712264621631\ 5123944281572324425728884560576486300464382181700628239037824863484153465`1000. {1, 1.3288685902396966} {2, 1.3312747901504896} {3, 1.3323425282051973} {4, 1.332847023623523} {5, 1.333092390269356} {6, 1.3332134072461794} {7, 1.3332735056011251} {8, 1.3333034529121235} {9, 1.3333184009310894} {10, 1.3333258680052456} {11, 1.333329598732931} {12, 1.3333314612403857} {13, 1.3333323874715661} {14, 1.3333328407146101} {15, 1.333333047634139} {16, 1.3333331117007168} {17, 1.3333330649503228} {18, 1.333332884008405} {19, 1.3333324784042027} {20, 1.333331909213665} {21, 1.3333313400231275} {22, 1.3333307708325899} {23, 1.3333302016420523} {24, 1.3333296324515147} {25, 1.333329063260977} {26, 1.3333284940704395} {27, 1.333327924879902} {28, 1.3333273556893643} {29, 1.3333273556893643} {30, 1.3333273556893643} {1, 1.3366696765269452} {2, 1.3351148999065687} {3, 1.3342551567219227} {4, 1.3338024138804245} {5, 1.3335699700137813} {6, 1.333452182663724} {7, 1.3333928914310222} {8, 1.3333631454473631} {9, 1.3333482468610245} {10, 1.333340790347077} {11, 1.333337058663567} {12, 1.3333351887254024} {13, 1.3333342462530235} {14, 1.3333337601826587} {15, 1.3333334875222205} {16, 1.3333332919522851} {17, 1.3333330756905692} {18, 1.3333327306069074} {19, 1.3333320841596263} {20, 1.3333312027665467} {21, 1.333330321373467} {22, 1.3333294399803877} {23, 1.333328558587308} {24, 1.3333276771942284} {25, 1.3333267958011488} {26, 1.3333259144080691} {27, 1.3333250330149895} {28, 1.3333241516219099} {29, 1.3333241516219099} {30, 1.3333241516219099} Diagonalisation. Discretization checksum [-1] (channel 1): 1.711544930641403922599900591`10.*^-49 Discretization checksum [-1] (channel 2): 1.7115444166257783454508964213`10.*^-49 BAND="asymode" thetaCh={"0.03997720551", "0.05996580826"} Discretization (channel 1) "xitable" (channel 1) 0.6285979345 0.3413758048 0.177679232 0.08982590184 0.04504118059 0.02253665261 0.0112703756 0.005635438154 0.002817752706 0.001408880216 0.0007044407361 0.0003522204262 0.0001761102294 0.00008805511553 0.00004402755839 0.00002201377924 0.00001100688962 5.503444848e-6 2.751722395e-6 1.375861231e-6 6.879306017e-7 3.439653067e-7 1.719826506e-7 8.599132533e-8 4.299566223e-8 2.149783113e-8 1.074891541e-8 "zetatable" (channel 1) 0.03512845697 -0.02275586194 -0.00724084151 -0.002010168645 -0.0005536019169 -0.0001406744354 -0.00003981359908 -0.00001012261327 -3.103488027e-6 -7.964789825e-7 -2.706841693e-7 -7.024270898e-8 -2.650586202e-8 -6.947850455e-9 -2.855103473e-9 -7.539480509e-10 -3.282545351e-10 -8.708567513e-11 -3.924241695e-11 -1.043864904e-11 -4.79356875e-12 -1.277043956e-12 -5.922650539e-13 -1.579708774e-13 -7.362610844e-14 -1.96811744e-14 -9.190909673e-15 Precision last xi:967.6342841528725 Precision last zeta: 961.977302142232 Discretization (channel 2) "xitable" (channel 2) 0.6256210589 0.3423064892 0.1778387108 0.0898447818 0.04504387056 0.02253678398 0.01127040123 0.005635428121 0.002817751822 0.00140887927 0.0007044406348 0.000352220361 0.0001761102222 0.00008805511124 0.00004402755796 0.00002201377888 0.00001100688964 5.503444742e-6 2.751722435e-6 1.375861151e-6 6.879306002e-7 3.439652887e-7 1.719826482e-7 8.599132413e-8 4.299566208e-8 2.149783106e-8 1.074891541e-8 "zetatable" (channel 2) -0.07026008606 0.0452664403 0.01464097285 0.004038569658 0.001109747523 0.0002819589065 0.00007978065209 0.00002028721441 6.217837874e-6 1.595805226e-6 5.420933452e-7 1.406708538e-7 5.305850804e-8 1.390752757e-8 5.713176964e-9 1.508642619e-9 6.56696089e-10 1.742181966e-10 7.849654348e-11 2.088021079e-11 9.587860143e-12 2.554257101e-12 1.18457079e-12 3.159457528e-13 1.472525423e-13 3.935932254e-14 1.838072742e-14 Precision last xi:967.6035634097213 Precision last zeta: 962.2475857300532 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.251}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {2, 2, 26, 15}} maketable[] exnames={d, epsilon, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, t12, U} thetaCh={"0.03997720551", "0.05996580826"} theta0Ch={"0.0399772055077504", "0.05996580826161658"} gammaPolCh={"0.11280576109010586", "0.13815827735852163"} checkdefinitions[] -> 0.6487245247027353 calcgsenergy[] diagvc[{-4, 1}] Generating matrix: ham.model..QS_-4.1 hamil={{-coefzeta[1, 0] - coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-3, 2}] Generating matrix: ham.model..QS_-3.2 hamil={{-coefzeta[1, 0], 0, 0, gammaPolCh[2]}, {0, -coefzeta[2, 0], gammaPolCh[1], 0}, {0, gammaPolCh[1], epsilon - coefzeta[1, 0] - coefzeta[2, 0], t12}, {gammaPolCh[2], 0, t12, epsilon - coefzeta[1, 0] - coefzeta[2, 0]}} dim={4, 4} det[vec]=0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=2.55351295663786*^-15 diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0] + coefzeta[2, 0], 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, gammaPolCh[1], 0, 0, 0, gammaPolCh[2], 0, 0, 0}, {0, gammaPolCh[1], epsilon - coefzeta[1, 0], t12, 0, 0, 0, 0, gammaPolCh[2], 0}, {Sqrt[2]*gammaPolCh[2], 0, t12, epsilon - coefzeta[1, 0], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2]}, {0, 0, 0, 0, coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], epsilon - coefzeta[2, 0], t12, Sqrt[2]*gammaPolCh[1], 0, 0}, {0, gammaPolCh[2], 0, 0, 0, t12, epsilon - coefzeta[2, 0], 0, gammaPolCh[1], 0}, {0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0}, {0, 0, gammaPolCh[2], 0, 0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12}, {0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.1397585377278157*^-14 diagvc[{-2, 3}] Generating matrix: ham.model..QS_-2.3 hamil={{0, gammaPolCh[1], 0, 0, -gammaPolCh[2], 0}, {gammaPolCh[1], epsilon - coefzeta[1, 0], t12, 0, 0, -gammaPolCh[2]}, {0, t12, epsilon - coefzeta[1, 0], 0, 0, 0}, {0, 0, 0, epsilon - coefzeta[2, 0], t12, 0}, {-gammaPolCh[2], 0, 0, t12, epsilon - coefzeta[2, 0], gammaPolCh[1]}, {0, -gammaPolCh[2], 0, 0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0] - coefzeta[2, 0]}} dim={6, 6} det[vec]=-0.9999999999999997 1-abs=3.3306690738754696*^-16 orthogonality check=7.271960811294775*^-15 diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{coefzeta[2, 0], gammaPolCh[1], 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0}, {gammaPolCh[1], epsilon - coefzeta[1, 0] + coefzeta[2, 0], t12, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, epsilon - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, coefzeta[1, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, Sqrt[2]*gammaPolCh[1], epsilon, t12, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[2]/2, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0}, {-(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, t12, epsilon, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0}, {0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2])}, {0, 0, -gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, epsilon, t12, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, -gammaPolCh[2]/2, 0, 0}, {-(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, t12, epsilon, gammaPolCh[1], 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0}, {0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2])}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, epsilon + coefzeta[1, 0] - coefzeta[2, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0}, {0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, t12, epsilon + coefzeta[1, 0] - coefzeta[2, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, -gammaPolCh[2]/2, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon - coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0}, {0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[2, 0], 0, 0, gammaPolCh[1]}, {0, 0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, 0, -gammaPolCh[2]/2, 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon - coefzeta[2, 0], Sqrt[3/2]*gammaPolCh[1], 0}, {0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=8.369458012920383*^-14 diagvc[{-1, 4}] Generating matrix: ham.model..QS_-1.4 hamil={{epsilon, t12, 0, gammaPolCh[2]}, {t12, epsilon, gammaPolCh[1], 0}, {0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0], 0}, {gammaPolCh[2], 0, 0, 2*epsilon - coefzeta[2, 0]}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.6367796834847468*^-15 diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[1], epsilon + coefzeta[2, 0], t12, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, epsilon + coefzeta[2, 0], 0, gammaPolCh[1], 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[2]*gammaPolCh[1], 0, 2*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0}, {0, 0, gammaPolCh[1], Sqrt[2]*t12, 2*epsilon - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, epsilon + coefzeta[1, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, t12, epsilon + coefzeta[1, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0}, {0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon, Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0}, {0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U, 0, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPolCh[2], 0}, {0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0], -t12, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2]}, {0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0}, {0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], 0, Sqrt[2]*gammaPolCh[1], 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 3*epsilon + U - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U - coefzeta[2, 0], Sqrt[2]*gammaPolCh[1]}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=0.9999999999999993 1-abs=6.661338147750939*^-16 orthogonality check=6.767273847958603*^-14 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{epsilon + coefzeta[2, 0], t12, 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2], 0, gammaPolCh[2]/Sqrt[6], 0, 0, (2*gammaPolCh[2])/Sqrt[3], 0, 0, 0}, {t12, epsilon + coefzeta[2, 0], gammaPolCh[1], 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0}, {0, gammaPolCh[1], 2*epsilon - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0}, {0, 0, 0, epsilon + coefzeta[1, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0}, {0, 0, 0, t12, epsilon + coefzeta[1, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, 0, 0, -gammaPolCh[1], 0, 2*epsilon + U, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0}, {gammaPolCh[2]/Sqrt[2], 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon, Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2]}, {0, gammaPolCh[2], 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U, 0, 0, gammaPolCh[1], 0, 0, 0, 0}, {gammaPolCh[2]/Sqrt[6], 0, 0, 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, gammaPolCh[2]/Sqrt[6]}, {0, 0, 0, 0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0], -t12, 0, 0, 0, 0}, {0, 0, gammaPolCh[2], 0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0], 0, 0, 0, 0}, {(2*gammaPolCh[2])/Sqrt[3], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon, 0, 0, (2*gammaPolCh[2])/Sqrt[3]}, {0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + coefzeta[1, 0] - coefzeta[2, 0], -gammaPolCh[1], 0}, {0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 3*epsilon + U - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, gammaPolCh[2]/Sqrt[2], 0, gammaPolCh[2]/Sqrt[6], 0, 0, (2*gammaPolCh[2])/Sqrt[3], 0, -t12, 3*epsilon + U - coefzeta[2, 0]}} dim={15, 15} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=4.750876341635957*^-14 diagvc[{0, 5}] Generating matrix: ham.model..QS_0.5 hamil={{2*epsilon}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{epsilon + coefzeta[1, 0] + coefzeta[2, 0], t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0}, {t12, epsilon + coefzeta[1, 0] + coefzeta[2, 0], 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-gammaPolCh[1], 0, 2*epsilon + U + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0}, {0, -(gammaPolCh[1]/Sqrt[2]), Sqrt[2]*t12, 2*epsilon + coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPolCh[1]/Sqrt[2]), 0, 0, 0, 0, 0, gammaPolCh[2]/2, 0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0}, {0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[2, 0], 0, 0, gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 2*epsilon + coefzeta[2, 0], Sqrt[3/2]*gammaPolCh[1], 0, 0, 0, 0, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, gammaPolCh[2]/2, 0, 0, 0}, {0, 0, 0, -(gammaPolCh[1]/Sqrt[2]), 0, Sqrt[3/2]*gammaPolCh[1], 3*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, gammaPolCh[1], 0, -t12, 3*epsilon + U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + U + coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0}, {-(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0}, {0, -gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0], 0, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0, 0}, {0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 0, 3*epsilon + U, -t12, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2])}, {0, 0, 0, gammaPolCh[2]/2, 0, -(Sqrt[3]*gammaPolCh[2])/2, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPolCh[2], 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {-(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*epsilon + coefzeta[1, 0], -gammaPolCh[1], 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0}, {0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPolCh[1], 3*epsilon + U, -t12, 0, 0, -(Sqrt[3/2]*gammaPolCh[2])}, {0, 0, 0, (Sqrt[3]*gammaPolCh[2])/2, 0, gammaPolCh[2]/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -t12, 3*epsilon + U, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPolCh[2], 0, 0, 0, 0, 0, 0, 0, 0, 3*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0] - coefzeta[2, 0], -gammaPolCh[1]}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPolCh[2]/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPolCh[2]), 0, 0, -gammaPolCh[1], 4*epsilon + 2*U - coefzeta[2, 0]}} dim={20, 20} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=8.510260638555645*^-14 diagvc[{1, 4}] Generating matrix: ham.model..QS_1.4 hamil={{2*epsilon + coefzeta[2, 0], 0, 0, -gammaPolCh[2]}, {0, 2*epsilon + coefzeta[1, 0], -gammaPolCh[1], 0}, {0, -gammaPolCh[1], 3*epsilon + U, -t12}, {-gammaPolCh[2], 0, -t12, 3*epsilon + U}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.588207426157396*^-15 diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 0}, {Sqrt[2]*t12, 2*epsilon + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, -gammaPolCh[1], 0, 0, 0, -gammaPolCh[2], 0, 0}, {0, Sqrt[2]*t12, 2*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], 0, Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0, 0}, {0, -gammaPolCh[1], 0, 3*epsilon + U + coefzeta[2, 0], -t12, 0, 0, 0, -gammaPolCh[2], 0}, {0, 0, Sqrt[2]*gammaPolCh[1], -t12, 3*epsilon + U + coefzeta[2, 0], Sqrt[2]*gammaPolCh[1], 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPolCh[1], 4*epsilon + 2*U - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0}, {Sqrt[2]*gammaPolCh[2], 0, 0, 0, 0, 0, 3*epsilon + U + coefzeta[1, 0], -t12, 0, Sqrt[2]*gammaPolCh[2]}, {0, -gammaPolCh[2], 0, 0, 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0], -gammaPolCh[1], 0}, {0, 0, 0, -gammaPolCh[2], 0, 0, 0, -gammaPolCh[1], 2*(2*epsilon + U), 0}, {0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPolCh[2], 0, 0, 4*epsilon + 2*U + coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.8539423468633132*^-14 diagvc[{2, 3}] Generating matrix: ham.model..QS_2.3 hamil={{2*epsilon + coefzeta[1, 0] + coefzeta[2, 0], -gammaPolCh[1], 0, 0, gammaPolCh[2], 0}, {-gammaPolCh[1], 3*epsilon + U + coefzeta[2, 0], -t12, 0, 0, gammaPolCh[2]}, {0, -t12, 3*epsilon + U + coefzeta[2, 0], 0, 0, 0}, {0, 0, 0, 3*epsilon + U + coefzeta[1, 0], -t12, 0}, {gammaPolCh[2], 0, 0, -t12, 3*epsilon + U + coefzeta[1, 0], -gammaPolCh[1]}, {0, gammaPolCh[2], 0, 0, -gammaPolCh[1], 2*(2*epsilon + U)}} dim={6, 6} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=8.382183835919932*^-15 diagvc[{3, 2}] Generating matrix: ham.model..QS_3.2 hamil={{3*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, -gammaPolCh[2]}, {-t12, 3*epsilon + U + coefzeta[1, 0] + coefzeta[2, 0], -gammaPolCh[1], 0}, {0, -gammaPolCh[1], 4*epsilon + 2*U + coefzeta[2, 0], 0}, {-gammaPolCh[2], 0, 0, 4*epsilon + 2*U + coefzeta[1, 0]}} dim={4, 4} det[vec]=-1. 1-abs=0. orthogonality check=2.0539125955565396*^-15 diagvc[{4, 1}] Generating matrix: ham.model..QS_4.1 hamil={{4*epsilon + 2*U + coefzeta[1, 0] + coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.5077876386255489, -0.4447643369768719, -0.3983916096106686, -0.34419566133272905, -0.33907661811450285, -0.3385858492516459, -0.3348059844233005, -0.3307537966547995, -0.29569904642844075, -0.2751137137224183, -0.2658442191739832, -0.2616097987580368, -0.25496773866510647, -0.2382966299321369, -0.2249020626111652, -0.22457355620368136, -0.2207522325197616, -0.19750575847564386, -0.19512413360722788, -0.19404572352867272} Lowest energies (GS shifted):{0., 0.06302330164867698, 0.10939602901488027, 0.16359197729281982, 0.16871102051104603, 0.16920178937390296, 0.17298165420224837, 0.1770338419707494, 0.21208859219710813, 0.2326739249031306, 0.24194341945156567, 0.24617783986751207, 0.2528198999604424, 0.26949100869341197, 0.2828855760143837, 0.2832140824218675, 0.28703540610578726, 0.310281880149905, 0.31266350501832096, 0.31374191509687616} Scale factor SCALE(Ninit):1.0820212806667224 Lowest energies (shifted and scaled):{0., 0.05824589846314587, 0.10110339876815766, 0.15119109043032622, 0.15592209092883025, 0.1563756576669581, 0.1598689945318452, 0.16361401123429317, 0.19601147961380472, 0.2150363667152286, 0.22360319873051332, 0.22751663416067164, 0.23365520112937083, 0.249062577149459, 0.26144178591392825, 0.261745390300786, 0.26527704328414053, 0.2867613472063274, 0.28896243595658605, 0.28995909849717} makeireducf GENERAL ireducTable: f[0]{} ireducTable: f[1]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] d: A_d d ireducTable: d{} ireducTable: Chop[Expand[komutator[Hselfd /. params, d[#1, #2]]]] & {} ireducTable: Chop[Expand[komutator[Hselfa /. params, a[#1, #2]]]] & {} s: n_a op.model..QS.n_a nc[a[0, 0], a[1, 0]] + nc[a[0, 1], a[1, 1]] s: SaSd op.model..QS.SaSd (-nc[a[0, 0], d[0, 0], a[1, 0], d[1, 0]] + nc[a[0, 0], d[0, 1], a[1, 0], d[1, 1]] - 2*nc[a[0, 0], d[0, 1], a[1, 1], d[1, 0]] - 2*nc[a[0, 1], d[0, 0], a[1, 0], d[1, 1]] + nc[a[0, 1], d[0, 0], a[1, 1], d[1, 0]] - nc[a[0, 1], d[0, 1], a[1, 1], d[1, 1]])/4 ireducTable: a[]{} ireducTable: Chop[Expand[komutator[Hselfa /. params, a[#1, #2]]]] & {} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.486587`6.138705495329401} {ham, 6.060373`6.057953089110961} {maketable, 9.823738`7.443821764773566} {xi, 0.465408`6.1193788376937714} {_, 0} data gammaPol=0.11280576109010586 "Success!"