NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.0.0 for Linux x86 (64-bit) (July 28, 2016) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module serial_dqd.m def2ch, NRDOTS=2 COEFCHANNELS:2 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) + coefzeta[2, 0]*(-1 + nc[f[0, 1, 0], f[1, 1, 0]] + nc[f[0, 1, 1], f[1, 1, 1]]) adddots, nrdots=2 params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.1, delta -> 0., t -> 0., gammaPol2 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[1]], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[1]], gammaPolch2 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[2]], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPol1 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[1]], gammaPol2 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[1]], U1 -> 1, U2 -> 1, eps1 -> -0.7, eps2 -> -0.3, t12 -> 0.1, Gamma1 -> 0.1, Gamma2 -> 0.1} NRDOTS:2 CHANNELS:2 basis:{a[], d[], f[0], f[1]} lrchain:{} lrextrarule:{} NROPS:4 Hamiltonian generated. -coefzeta[1, 0] - coefzeta[2, 0] + eps2*nc[a[0, 0], a[1, 0]] + t12*nc[a[0, 0], d[1, 0]] + gammaPol2*nc[a[0, 0], f[1, 1, 0]] + eps2*nc[a[0, 1], a[1, 1]] + t12*nc[a[0, 1], d[1, 1]] + gammaPol2*nc[a[0, 1], f[1, 1, 1]] + t12*nc[d[0, 0], a[1, 0]] + eps1*nc[d[0, 0], d[1, 0]] + gammaPol1*nc[d[0, 0], f[1, 0, 0]] + t12*nc[d[0, 1], a[1, 1]] + eps1*nc[d[0, 1], d[1, 1]] + gammaPol1*nc[d[0, 1], f[1, 0, 1]] + gammaPol1*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPol1*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] + gammaPol2*nc[f[0, 1, 0], a[1, 0]] + coefzeta[2, 0]*nc[f[0, 1, 0], f[1, 1, 0]] + gammaPol2*nc[f[0, 1, 1], a[1, 1]] + coefzeta[2, 0]*nc[f[0, 1, 1], f[1, 1, 1]] - U2*nc[a[0, 0], a[0, 1], a[1, 0], a[1, 1]] - U1*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0820212806667224 faktor=1.8483924814931878 Generating basis Basis states generated. BASIS NR=256 Basis: basis.model..QS PREC=1000 Tmin=1.*^-10 Tmin=1.*^-10 ==> Nmax=33 DISCNMAX=33 mMAX=80 Diagonalisation. Discretization checksum [-1] (channel 1): 1.710569414459005213529943339`10.*^-49 Discretization checksum [-1] (channel 2): 1.710569414459005213529943339`10.*^-49 BAND="flat" thetaCh={"2.", "2."} Discretization (channel 1) "xitable" (channel 1) 0.4722328021 0.2557283998 0.1332084596 0.067364349 0.03378021281 0.01690245707 0.008452775374 0.004226581136 0.002113314752 0.001056660399 0.0005283305775 0.000264165336 0.0001320826739 0.00006604133769 0.00003302066893 0.00001651033448 8.255167241e-6 4.127583621e-6 2.06379181e-6 1.031895905e-6 5.159479526e-7 2.579739763e-7 1.289869881e-7 6.449349407e-8 3.224674704e-8 1.612337352e-8 8.061686759e-9 4.03084338e-9 2.01542169e-9 1.007710845e-9 5.038554224e-10 2.519277112e-10 1.259638556e-10 6.298192781e-11 "zetatable" (channel 1) 0.e-999 0.e-999 0.e-998 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-990 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-985 0.e-984 0.e-983 0.e-982 0.e-981 0.e-980 0.e-979 0.e-979 0.e-978 0.e-977 0.e-976 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-969 Precision last xi:959.2419458985489 Precision last zeta: 0. Discretization (channel 2) "xitable" (channel 2) 0.4722328021 0.2557283998 0.1332084596 0.067364349 0.03378021281 0.01690245707 0.008452775374 0.004226581136 0.002113314752 0.001056660399 0.0005283305775 0.000264165336 0.0001320826739 0.00006604133769 0.00003302066893 0.00001651033448 8.255167241e-6 4.127583621e-6 2.06379181e-6 1.031895905e-6 5.159479526e-7 2.579739763e-7 1.289869881e-7 6.449349407e-8 3.224674704e-8 1.612337352e-8 8.061686759e-9 4.03084338e-9 2.01542169e-9 1.007710845e-9 5.038554224e-10 2.519277112e-10 1.259638556e-10 6.298192781e-11 "zetatable" (channel 2) 0.e-999 0.e-999 0.e-998 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-990 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-985 0.e-984 0.e-983 0.e-982 0.e-981 0.e-980 0.e-979 0.e-979 0.e-978 0.e-977 0.e-976 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-969 Precision last xi:959.2419458985489 Precision last zeta: 0. Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {2, 2, 33, 15}} maketable[] exnames={d, eps1, eps2, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, t12, U1, U2} thetaCh={"2.", "2."} theta0Ch={"0.2", "0.2"} gammaPolCh={"0.252313252202016", "0.252313252202016"} checkdefinitions[] -> -1.581493982383872 calcgsenergy[] diagvc[{-4, 1}] Generating matrix: ham.model..QS_-4.1 hamil={{-coefzeta[1, 0] - coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-3, 2}] Generating matrix: ham.model..QS_-3.2 hamil={{-coefzeta[1, 0], 0, 0, gammaPol2}, {0, -coefzeta[2, 0], gammaPol1, 0}, {0, gammaPol1, eps1 - coefzeta[1, 0] - coefzeta[2, 0], t12}, {gammaPol2, 0, t12, eps2 - coefzeta[1, 0] - coefzeta[2, 0]}} dim={4, 4} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.3071822230491534*^-15 diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{-coefzeta[1, 0] + coefzeta[2, 0], 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0, 0, 0, 0}, {0, 0, gammaPol1, 0, 0, 0, gammaPol2, 0, 0, 0}, {0, gammaPol1, eps1 - coefzeta[1, 0], t12, 0, 0, 0, 0, gammaPol2, 0}, {Sqrt[2]*gammaPol2, 0, t12, eps2 - coefzeta[1, 0], 0, 0, 0, 0, 0, Sqrt[2]*gammaPol2}, {0, 0, 0, 0, coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*gammaPol1, 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPol1, eps1 - coefzeta[2, 0], t12, Sqrt[2]*gammaPol1, 0, 0}, {0, gammaPol2, 0, 0, 0, t12, eps2 - coefzeta[2, 0], 0, gammaPol1, 0}, {0, 0, 0, 0, 0, Sqrt[2]*gammaPol1, 0, 2*eps1 + U1 - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0}, {0, 0, gammaPol2, 0, 0, 0, gammaPol1, Sqrt[2]*t12, eps1 + eps2 - coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12}, {0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2 - coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=-1.0000000000000007 1-abs=-6.661338147750939*^-16 orthogonality check=1.6511152254455874*^-14 diagvc[{-2, 3}] Generating matrix: ham.model..QS_-2.3 hamil={{0, gammaPol1, 0, 0, -gammaPol2, 0}, {gammaPol1, eps1 - coefzeta[1, 0], t12, 0, 0, -gammaPol2}, {0, t12, eps2 - coefzeta[1, 0], 0, 0, 0}, {0, 0, 0, eps1 - coefzeta[2, 0], t12, 0}, {-gammaPol2, 0, 0, t12, eps2 - coefzeta[2, 0], gammaPol1}, {0, -gammaPol2, 0, 0, gammaPol1, eps1 + eps2 - coefzeta[1, 0] - coefzeta[2, 0]}} dim={6, 6} det[vec]=1. 1-abs=0. orthogonality check=3.649298058506387*^-15 diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{coefzeta[2, 0], gammaPol1, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, 0, 0, 0, 0, 0}, {gammaPol1, eps1 - coefzeta[1, 0] + coefzeta[2, 0], t12, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, eps2 - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, coefzeta[1, 0], Sqrt[2]*gammaPol1, 0, 0, 0, 0, 0, 0, 0, 0, gammaPol2, 0, 0, 0, 0, 0, 0}, {0, 0, 0, Sqrt[2]*gammaPol1, eps1, t12, Sqrt[2]*gammaPol1, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPol2/2, 0, (Sqrt[3]*gammaPol2)/2, 0, 0}, {-(gammaPol2/Sqrt[2]), 0, 0, 0, t12, eps2, 0, gammaPol1, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPol1, 0, 2*eps1 + U1 - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, gammaPol2, 0}, {0, -(gammaPol2/Sqrt[2]), 0, 0, 0, gammaPol1, Sqrt[2]*t12, eps1 + eps2 - coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2])}, {0, 0, -gammaPol2, 0, 0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2 - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, eps1, t12, 0, 0, 0, 0, -(Sqrt[3]*gammaPol2)/2, 0, -gammaPol2/2, 0, 0}, {-(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, 0, 0, 0, 0, t12, eps2, gammaPol1, 0, 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0}, {0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, 0, 0, 0, 0, gammaPol1, eps1 + eps2 - coefzeta[1, 0], 0, 0, 0, 0, 0, 0, 0, -(Sqrt[3/2]*gammaPol2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, eps1 + coefzeta[1, 0] - coefzeta[2, 0], t12, -gammaPol1, 0, 0, 0, 0, 0}, {0, 0, 0, gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0, t12, eps2 + coefzeta[1, 0] - coefzeta[2, 0], 0, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPol1, 0, 2*eps1 + U1 - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, -gammaPol2/2, 0, 0, 0, 0, -(Sqrt[3]*gammaPol2)/2, 0, 0, 0, -(gammaPol1/Sqrt[2]), Sqrt[2]*t12, eps1 + eps2 - coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPol1/Sqrt[2]), 0}, {0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2 - coefzeta[2, 0], 0, 0, gammaPol1}, {0, 0, 0, 0, (Sqrt[3]*gammaPol2)/2, 0, 0, 0, 0, -gammaPol2/2, 0, 0, 0, Sqrt[3/2]*gammaPol1, 0, 0, 0, eps1 + eps2 - coefzeta[2, 0], Sqrt[3/2]*gammaPol1, 0}, {0, 0, 0, 0, 0, 0, gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 2*eps1 + eps2 + U1 - coefzeta[1, 0] - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, gammaPol1, 0, -t12, eps1 + 2*eps2 + U2 - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=8.018932062424031*^-14 diagvc[{-1, 4}] Generating matrix: ham.model..QS_-1.4 hamil={{eps1, t12, 0, gammaPol2}, {t12, eps2, gammaPol1, 0}, {0, gammaPol1, eps1 + eps2 - coefzeta[1, 0], 0}, {gammaPol2, 0, 0, eps1 + eps2 - coefzeta[2, 0]}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.9671764217576992*^-15 diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*gammaPol1, 0, 0, 0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {Sqrt[2]*gammaPol1, eps1 + coefzeta[2, 0], t12, Sqrt[2]*gammaPol1, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, Sqrt[3/2]*gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0}, {0, t12, eps2 + coefzeta[2, 0], 0, gammaPol1, 0, 0, 0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[2]*gammaPol1, 0, 2*eps1 + U1 - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0, 0, 0, 0, 0}, {0, 0, gammaPol1, Sqrt[2]*t12, eps1 + eps2 - coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2 - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, eps1 + coefzeta[1, 0], t12, -gammaPol1, 0, 0, 0, 0, 0, 0, gammaPol2, 0, 0, 0, 0}, {Sqrt[2]*gammaPol2, 0, 0, 0, 0, 0, t12, eps2 + coefzeta[1, 0], 0, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 0, 0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPol1, 0, 2*eps1 + U1, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPol2, 0, 0}, {0, -(gammaPol2/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPol1/Sqrt[2]), Sqrt[2]*t12, eps1 + eps2, Sqrt[2]*t12, 0, -(gammaPol1/Sqrt[2]), 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0}, {0, 0, -gammaPol2, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2, 0, 0, gammaPol1, 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPol2, 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPol1, 0, 0, 0, eps1 + eps2, Sqrt[3/2]*gammaPol1, 0, 0, 0, 0, 0, Sqrt[3/2]*gammaPol2, 0}, {0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0, 0, 0, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 2*eps1 + eps2 + U1 - coefzeta[1, 0], -t12, 0, 0, 0, 0, 0, Sqrt[2]*gammaPol2}, {0, 0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, gammaPol1, 0, -t12, eps1 + 2*eps2 + U2 - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*eps1 + U1 + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, gammaPol2, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, eps1 + eps2 + coefzeta[1, 0] - coefzeta[2, 0], Sqrt[2]*t12, -gammaPol1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2 + coefzeta[1, 0] - coefzeta[2, 0], 0, Sqrt[2]*gammaPol1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPol2, 0, 0, 0, 0, 0, 0, -gammaPol1, 0, 2*eps1 + eps2 + U1 - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, Sqrt[3/2]*gammaPol2, 0, 0, 0, 0, Sqrt[2]*gammaPol1, -t12, eps1 + 2*eps2 + U2 - coefzeta[2, 0], Sqrt[2]*gammaPol1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0, 0, 0, Sqrt[2]*gammaPol1, 2*eps1 + 2*eps2 + U1 + U2 - coefzeta[1, 0] - coefzeta[2, 0]}} dim={20, 20} det[vec]=-1.0000000000000007 1-abs=-6.661338147750939*^-16 orthogonality check=8.93737635090238*^-14 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{eps1 + coefzeta[2, 0], t12, 0, 0, 0, 0, gammaPol2/Sqrt[2], 0, gammaPol2/Sqrt[6], 0, 0, (2*gammaPol2)/Sqrt[3], 0, 0, 0}, {t12, eps2 + coefzeta[2, 0], gammaPol1, 0, 0, 0, 0, gammaPol2, 0, 0, 0, 0, 0, 0, 0}, {0, gammaPol1, eps1 + eps2 - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, gammaPol2, 0, 0, 0, 0}, {0, 0, 0, eps1 + coefzeta[1, 0], t12, -gammaPol1, 0, 0, 0, 0, 0, 0, -gammaPol2, 0, 0}, {0, 0, 0, t12, eps2 + coefzeta[1, 0], 0, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, -gammaPol1, 0, 2*eps1 + U1, Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, -gammaPol2, 0}, {gammaPol2/Sqrt[2], 0, 0, 0, -(gammaPol1/Sqrt[2]), Sqrt[2]*t12, eps1 + eps2, Sqrt[2]*t12, 0, -(gammaPol1/Sqrt[2]), 0, 0, 0, 0, gammaPol2/Sqrt[2]}, {0, gammaPol2, 0, 0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2, 0, 0, gammaPol1, 0, 0, 0, 0}, {gammaPol2/Sqrt[6], 0, 0, 0, Sqrt[3/2]*gammaPol1, 0, 0, 0, eps1 + eps2, Sqrt[3/2]*gammaPol1, 0, 0, 0, 0, gammaPol2/Sqrt[6]}, {0, 0, 0, 0, 0, 0, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 2*eps1 + eps2 + U1 - coefzeta[1, 0], -t12, 0, 0, 0, 0}, {0, 0, gammaPol2, 0, 0, 0, 0, gammaPol1, 0, -t12, eps1 + 2*eps2 + U2 - coefzeta[1, 0], 0, 0, 0, 0}, {(2*gammaPol2)/Sqrt[3], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, eps1 + eps2, 0, 0, (2*gammaPol2)/Sqrt[3]}, {0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0, eps1 + eps2 + coefzeta[1, 0] - coefzeta[2, 0], -gammaPol1, 0}, {0, 0, 0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, 0, -gammaPol1, 2*eps1 + eps2 + U1 - coefzeta[2, 0], -t12}, {0, 0, 0, 0, 0, 0, gammaPol2/Sqrt[2], 0, gammaPol2/Sqrt[6], 0, 0, (2*gammaPol2)/Sqrt[3], 0, -t12, eps1 + 2*eps2 + U2 - coefzeta[2, 0]}} dim={15, 15} det[vec]=-1. 1-abs=0. orthogonality check=4.6323296760963917*^-14 diagvc[{0, 5}] Generating matrix: ham.model..QS_0.5 hamil={{eps1 + eps2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{eps1 + coefzeta[1, 0] + coefzeta[2, 0], t12, -gammaPol1, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, 0}, {t12, eps2 + coefzeta[1, 0] + coefzeta[2, 0], 0, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 0, 0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-gammaPol1, 0, 2*eps1 + U1 + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0}, {0, -(gammaPol1/Sqrt[2]), Sqrt[2]*t12, eps1 + eps2 + coefzeta[2, 0], Sqrt[2]*t12, 0, -(gammaPol1/Sqrt[2]), 0, 0, 0, 0, 0, gammaPol2/2, 0, 0, 0, (Sqrt[3]*gammaPol2)/2, 0, 0, 0}, {0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2 + coefzeta[2, 0], 0, 0, gammaPol1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, Sqrt[3/2]*gammaPol1, 0, 0, 0, eps1 + eps2 + coefzeta[2, 0], Sqrt[3/2]*gammaPol1, 0, 0, 0, 0, 0, -(Sqrt[3]*gammaPol2)/2, 0, 0, 0, gammaPol2/2, 0, 0, 0}, {0, 0, 0, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 2*eps1 + eps2 + U1 - coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, 0, 0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, gammaPol1, 0, -t12, eps1 + 2*eps2 + U2 - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 2*eps1 + U1 + coefzeta[1, 0], Sqrt[2]*t12, 0, 0, 0, 0, 0, 0, 0, gammaPol2, 0, 0}, {-(gammaPol2/Sqrt[2]), 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, eps1 + eps2 + coefzeta[1, 0], Sqrt[2]*t12, -gammaPol1, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0}, {0, -gammaPol2, 0, 0, 0, 0, 0, 0, 0, Sqrt[2]*t12, 2*eps2 + U2 + coefzeta[1, 0], 0, Sqrt[2]*gammaPol1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, 0, 0, 0, -gammaPol1, 0, 2*eps1 + eps2 + U1, -t12, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2])}, {0, 0, 0, gammaPol2/2, 0, -(Sqrt[3]*gammaPol2)/2, 0, 0, 0, 0, Sqrt[2]*gammaPol1, -t12, eps1 + 2*eps2 + U2, Sqrt[2]*gammaPol1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, -gammaPol2, 0, 0, 0, 0, 0, Sqrt[2]*gammaPol1, 2*eps1 + 2*eps2 + U1 + U2 - coefzeta[1, 0], 0, 0, 0, 0, 0, 0}, {-(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, eps1 + eps2 + coefzeta[1, 0], -gammaPol1, 0, 0, -(Sqrt[3/2]*gammaPol2), 0}, {0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -gammaPol1, 2*eps1 + eps2 + U1, -t12, 0, 0, -(Sqrt[3/2]*gammaPol2)}, {0, 0, 0, (Sqrt[3]*gammaPol2)/2, 0, gammaPol2/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -t12, eps1 + 2*eps2 + U2, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, gammaPol2, 0, 0, 0, 0, 0, 0, 0, 0, 2*eps1 + eps2 + U1 + coefzeta[1, 0] - coefzeta[2, 0], -t12, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, -t12, eps1 + 2*eps2 + U2 + coefzeta[1, 0] - coefzeta[2, 0], -gammaPol1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(gammaPol2/Sqrt[2]), 0, 0, 0, -(Sqrt[3/2]*gammaPol2), 0, 0, -gammaPol1, 2*eps1 + 2*eps2 + U1 + U2 - coefzeta[2, 0]}} dim={20, 20} det[vec]=-0.9999999999999999 1-abs=1.1102230246251565*^-16 orthogonality check=8.92583804177477*^-14 diagvc[{1, 4}] Generating matrix: ham.model..QS_1.4 hamil={{eps1 + eps2 + coefzeta[2, 0], 0, 0, -gammaPol2}, {0, eps1 + eps2 + coefzeta[1, 0], -gammaPol1, 0}, {0, -gammaPol1, 2*eps1 + eps2 + U1, -t12}, {-gammaPol2, 0, -t12, eps1 + 2*eps2 + U2}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.2551405187698492*^-15 diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{2*eps1 + U1 + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, 0, 0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 0}, {Sqrt[2]*t12, eps1 + eps2 + coefzeta[1, 0] + coefzeta[2, 0], Sqrt[2]*t12, -gammaPol1, 0, 0, 0, -gammaPol2, 0, 0}, {0, Sqrt[2]*t12, 2*eps2 + U2 + coefzeta[1, 0] + coefzeta[2, 0], 0, Sqrt[2]*gammaPol1, 0, 0, 0, 0, 0}, {0, -gammaPol1, 0, 2*eps1 + eps2 + U1 + coefzeta[2, 0], -t12, 0, 0, 0, -gammaPol2, 0}, {0, 0, Sqrt[2]*gammaPol1, -t12, eps1 + 2*eps2 + U2 + coefzeta[2, 0], Sqrt[2]*gammaPol1, 0, 0, 0, 0}, {0, 0, 0, 0, Sqrt[2]*gammaPol1, 2*eps1 + 2*eps2 + U1 + U2 - coefzeta[1, 0] + coefzeta[2, 0], 0, 0, 0, 0}, {Sqrt[2]*gammaPol2, 0, 0, 0, 0, 0, 2*eps1 + eps2 + U1 + coefzeta[1, 0], -t12, 0, Sqrt[2]*gammaPol2}, {0, -gammaPol2, 0, 0, 0, 0, -t12, eps1 + 2*eps2 + U2 + coefzeta[1, 0], -gammaPol1, 0}, {0, 0, 0, -gammaPol2, 0, 0, 0, -gammaPol1, 2*eps1 + 2*eps2 + U1 + U2, 0}, {0, 0, 0, 0, 0, 0, Sqrt[2]*gammaPol2, 0, 0, 2*eps1 + 2*eps2 + U1 + U2 + coefzeta[1, 0] - coefzeta[2, 0]}} dim={10, 10} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.610419696901344*^-14 diagvc[{2, 3}] Generating matrix: ham.model..QS_2.3 hamil={{eps1 + eps2 + coefzeta[1, 0] + coefzeta[2, 0], -gammaPol1, 0, 0, gammaPol2, 0}, {-gammaPol1, 2*eps1 + eps2 + U1 + coefzeta[2, 0], -t12, 0, 0, gammaPol2}, {0, -t12, eps1 + 2*eps2 + U2 + coefzeta[2, 0], 0, 0, 0}, {0, 0, 0, 2*eps1 + eps2 + U1 + coefzeta[1, 0], -t12, 0}, {gammaPol2, 0, 0, -t12, eps1 + 2*eps2 + U2 + coefzeta[1, 0], -gammaPol1}, {0, gammaPol2, 0, 0, -gammaPol1, 2*eps1 + 2*eps2 + U1 + U2}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.979089493411091*^-15 diagvc[{3, 2}] Generating matrix: ham.model..QS_3.2 hamil={{2*eps1 + eps2 + U1 + coefzeta[1, 0] + coefzeta[2, 0], -t12, 0, -gammaPol2}, {-t12, eps1 + 2*eps2 + U2 + coefzeta[1, 0] + coefzeta[2, 0], -gammaPol1, 0}, {0, -gammaPol1, 2*eps1 + 2*eps2 + U1 + U2 + coefzeta[2, 0], 0}, {-gammaPol2, 0, 0, 2*eps1 + 2*eps2 + U1 + U2 + coefzeta[1, 0]}} dim={4, 4} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.9012569296705806*^-15 diagvc[{4, 1}] Generating matrix: ham.model..QS_4.1 hamil={{2*eps1 + 2*eps2 + U1 + U2 + coefzeta[1, 0] + coefzeta[2, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-1.6694715155835085, -1.4979305679584891, -1.497930567958483, -1.403227980350701, -1.4032279803506995, -1.3662537684534517, -1.3305580637619427, -1.3146956830266632, -1.2728878820131653, -1.2728830395443875, -1.2728830395443875, -1.228774588789286, -1.228774588789285, -1.1985385922469671, -1.175171979725238, -1.1751719797252362, -1.1606502636494171, -1.1494842598985617, -1.1494842598985608, -1.1151297827209774} Lowest energies (GS shifted):{0., 0.17154094762501937, 0.17154094762502559, 0.2662435352328074, 0.26624353523280897, 0.3032177471300568, 0.33891345182156574, 0.3547758325568453, 0.3965836335703432, 0.39658847603912095, 0.39658847603912095, 0.44069692679422245, 0.44069692679422356, 0.47093292333654135, 0.49429953585827047, 0.49429953585827224, 0.5088212519340913, 0.5199872556849467, 0.5199872556849476, 0.5543417328625311} Scale factor SCALE(Ninit):1.0820212806667224 Lowest energies (shifted and scaled):{0., 0.15853749892915125, 0.158537498929157, 0.24606127438524394, 0.2460612743852454, 0.2802327020252498, 0.3132225381119429, 0.3278824907567795, 0.3665211032873359, 0.3665255786787762, 0.3665255786787762, 0.4072904430517973, 0.4072904430517983, 0.4352344373914354, 0.45682977284299975, 0.4568297728430014, 0.47025068824946276, 0.48057026694016575, 0.4805702669401665, 0.5123205456005038} makeireducf GENERAL ireducTable: f[0]{} ireducTable: f[1]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] s: n_d^2 op.model..QS.n_d^2 nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] - 2*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] d: A_d d ireducTable: d{} s: n_a op.model..QS.n_a nc[a[0, 0], a[1, 0]] + nc[a[0, 1], a[1, 1]] s: n_a^2 op.model..QS.n_a^2 nc[a[0, 0], a[1, 0]] + nc[a[0, 1], a[1, 1]] - 2*nc[a[0, 0], a[0, 1], a[1, 0], a[1, 1]] s: SaSd op.model..QS.SaSd (-nc[a[0, 0], d[0, 0], a[1, 0], d[1, 0]] + nc[a[0, 0], d[0, 1], a[1, 0], d[1, 1]] - 2*nc[a[0, 0], d[0, 1], a[1, 1], d[1, 0]] - 2*nc[a[0, 1], d[0, 0], a[1, 0], d[1, 1]] + nc[a[0, 1], d[0, 0], a[1, 1], d[1, 0]] - nc[a[0, 1], d[0, 1], a[1, 1], d[1, 1]])/4 ireducTable: a[]{} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.240463`5.832593254530042} {ham, 1.0542639999999999999`5.298403111338362} {maketable, 2.114891`6.776832982550585} {xi, 0.588421`6.221233157247889} {_, 0} data gammaPol=0.252313252202016 "Success!"