NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.0.0 for Linux x86 (64-bit) (July 28, 2016) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module parallel_dqd.m def1ch, NRDOTS=2 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=2 params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.1, delta -> 0., t -> 0., gammaPol2 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[1]], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[1]], gammaPolch2 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[2]], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPol1 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[1]], gammaPol2 -> 0.1784124116152771*Sqrt[gammaA*thetaCh[1]], U1 -> 1, U2 -> 1, eps1 -> -0.7, eps2 -> -0.3, t12 -> 0.1, Gamma1 -> 0.1, Gamma2 -> 0.1} NRDOTS:2 CHANNELS:1 basis:{a[], d[], f[0]} lrchain:{} lrextrarule:{} NROPS:3 Hamiltonian generated. -coefzeta[1, 0] + eps2*nc[a[0, 0], a[1, 0]] + t12*nc[a[0, 0], d[1, 0]] + gammaPol2*nc[a[0, 0], f[1, 0, 0]] + eps2*nc[a[0, 1], a[1, 1]] + t12*nc[a[0, 1], d[1, 1]] + gammaPol2*nc[a[0, 1], f[1, 0, 1]] + t12*nc[d[0, 0], a[1, 0]] + eps1*nc[d[0, 0], d[1, 0]] + gammaPol1*nc[d[0, 0], f[1, 0, 0]] + t12*nc[d[0, 1], a[1, 1]] + eps1*nc[d[0, 1], d[1, 1]] + gammaPol1*nc[d[0, 1], f[1, 0, 1]] + gammaPol2*nc[f[0, 0, 0], a[1, 0]] + gammaPol1*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPol2*nc[f[0, 0, 1], a[1, 1]] + gammaPol1*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U2*nc[a[0, 0], a[0, 1], a[1, 0], a[1, 1]] - U1*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0510537250399226 faktor=1.6479184330021646 Generating basis Basis states generated. BASIS NR=64 Basis: basis.model..QS PREC=1000 Tmin=1.*^-10 Tmin=1.*^-10 ==> Nmax=42 DISCNMAX=42 mMAX=84 Diagonalisation. Discretization checksum [-1] (channel 1): 2.784154609541307270170357727625724949`10.*^-41 BAND="flat" thetaCh={"2."} Discretization (channel 1) "xitable" (channel 1) 0.5049098776 0.3180107496 0.195230373 0.1153712823 0.06714955356 0.0388746386 0.02246477381 0.01297399467 0.007491300293 0.004325250724 0.002497212862 0.001441771944 0.0008324084643 0.0004805914519 0.0002774696428 0.0001601971804 0.00009248988666 0.00005339906124 0.00003082996243 0.00001779968712 0.00001027665415 5.933229041e-6 3.425551384e-6 1.977743014e-6 1.141850461e-6 6.592476713e-7 3.806168205e-7 2.197492238e-7 1.268722735e-7 7.324974125e-8 4.229075783e-8 2.441658042e-8 1.409691928e-8 8.138860139e-9 4.698973092e-9 2.71295338e-9 1.566324364e-9 9.043177933e-10 5.221081214e-10 3.014392644e-10 1.740360405e-10 1.004797548e-10 5.801201349e-11 "zetatable" (channel 1) 0.e-999 0.e-998 0.e-998 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-991 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-985 0.e-984 0.e-984 0.e-983 0.e-982 0.e-981 0.e-980 0.e-979 0.e-978 0.e-977 0.e-976 0.e-976 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-969 0.e-968 0.e-968 0.e-967 0.e-966 0.e-965 0.e-964 0.e-963 0.e-962 Precision last xi:952.2651260013099 Precision last zeta: 0. Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 2, 42, 10}} maketable[] exnames={d, eps1, eps2, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, t12, U1, U2} thetaCh={"2."} theta0Ch={"0.2"} gammaPolCh={"0.252313252202016"} checkdefinitions[] -> -1.581493982383872 calcgsenergy[] diagvc[{-3, 1}] Generating matrix: ham.model..QS_-3.1 hamil={{-coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-2, 2}] Generating matrix: ham.model..QS_-2.2 hamil={{0, gammaPol1, gammaPol2}, {gammaPol1, eps1 - coefzeta[1, 0], t12}, {gammaPol2, t12, eps2 - coefzeta[1, 0]}} dim={3, 3} det[vec]=1. 1-abs=0. orthogonality check=1.7832957333041577*^-15 diagvc[{-1, 1}] Generating matrix: ham.model..QS_-1.1 hamil={{coefzeta[1, 0], Sqrt[2]*gammaPol1, Sqrt[2]*gammaPol2, 0, 0, 0}, {Sqrt[2]*gammaPol1, eps1, t12, Sqrt[2]*gammaPol1, gammaPol2, 0}, {Sqrt[2]*gammaPol2, t12, eps2, 0, gammaPol1, Sqrt[2]*gammaPol2}, {0, Sqrt[2]*gammaPol1, 0, 2*eps1 + U1 - coefzeta[1, 0], Sqrt[2]*t12, 0}, {0, gammaPol2, gammaPol1, Sqrt[2]*t12, eps1 + eps2 - coefzeta[1, 0], Sqrt[2]*t12}, {0, 0, Sqrt[2]*gammaPol2, 0, Sqrt[2]*t12, 2*eps2 + U2 - coefzeta[1, 0]}} dim={6, 6} det[vec]=-1. 1-abs=0. orthogonality check=6.449471490720116*^-15 diagvc[{-1, 3}] Generating matrix: ham.model..QS_-1.3 hamil={{eps1, t12, -gammaPol2}, {t12, eps2, gammaPol1}, {-gammaPol2, gammaPol1, eps1 + eps2 - coefzeta[1, 0]}} dim={3, 3} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=5.551115123125783*^-16 diagvc[{0, 2}] Generating matrix: ham.model..QS_0.2 hamil={{eps1 + coefzeta[1, 0], t12, -gammaPol1, -(gammaPol2/Sqrt[2]), 0, -(Sqrt[3/2]*gammaPol2), 0, 0}, {t12, eps2 + coefzeta[1, 0], 0, -(gammaPol1/Sqrt[2]), -gammaPol2, Sqrt[3/2]*gammaPol1, 0, 0}, {-gammaPol1, 0, 2*eps1 + U1, Sqrt[2]*t12, 0, 0, gammaPol2, 0}, {-(gammaPol2/Sqrt[2]), -(gammaPol1/Sqrt[2]), Sqrt[2]*t12, eps1 + eps2, Sqrt[2]*t12, 0, -(gammaPol1/Sqrt[2]), -(gammaPol2/Sqrt[2])}, {0, -gammaPol2, 0, Sqrt[2]*t12, 2*eps2 + U2, 0, 0, gammaPol1}, {-(Sqrt[3/2]*gammaPol2), Sqrt[3/2]*gammaPol1, 0, 0, 0, eps1 + eps2, Sqrt[3/2]*gammaPol1, -(Sqrt[3/2]*gammaPol2)}, {0, 0, gammaPol2, -(gammaPol1/Sqrt[2]), 0, Sqrt[3/2]*gammaPol1, 2*eps1 + eps2 + U1 - coefzeta[1, 0], -t12}, {0, 0, 0, -(gammaPol2/Sqrt[2]), gammaPol1, -(Sqrt[3/2]*gammaPol2), -t12, eps1 + 2*eps2 + U2 - coefzeta[1, 0]}} dim={8, 8} det[vec]=1.0000000000000004 1-abs=-4.440892098500626*^-16 orthogonality check=1.3357370765021415*^-14 diagvc[{0, 4}] Generating matrix: ham.model..QS_0.4 hamil={{eps1 + eps2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 1}] Generating matrix: ham.model..QS_1.1 hamil={{2*eps1 + U1 + coefzeta[1, 0], Sqrt[2]*t12, 0, Sqrt[2]*gammaPol2, 0, 0}, {Sqrt[2]*t12, eps1 + eps2 + coefzeta[1, 0], Sqrt[2]*t12, -gammaPol1, -gammaPol2, 0}, {0, Sqrt[2]*t12, 2*eps2 + U2 + coefzeta[1, 0], 0, Sqrt[2]*gammaPol1, 0}, {Sqrt[2]*gammaPol2, -gammaPol1, 0, 2*eps1 + eps2 + U1, -t12, Sqrt[2]*gammaPol2}, {0, -gammaPol2, Sqrt[2]*gammaPol1, -t12, eps1 + 2*eps2 + U2, Sqrt[2]*gammaPol1}, {0, 0, 0, Sqrt[2]*gammaPol2, Sqrt[2]*gammaPol1, 2*eps1 + 2*eps2 + U1 + U2 - coefzeta[1, 0]}} dim={6, 6} det[vec]=-1. 1-abs=0. orthogonality check=7.070732888081466*^-15 diagvc[{1, 3}] Generating matrix: ham.model..QS_1.3 hamil={{eps1 + eps2 + coefzeta[1, 0], -gammaPol1, gammaPol2}, {-gammaPol1, 2*eps1 + eps2 + U1, -t12}, {gammaPol2, -t12, eps1 + 2*eps2 + U2}} dim={3, 3} det[vec]=1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.7208456881689926*^-15 diagvc[{2, 2}] Generating matrix: ham.model..QS_2.2 hamil={{2*eps1 + eps2 + U1 + coefzeta[1, 0], -t12, -gammaPol2}, {-t12, eps1 + 2*eps2 + U2 + coefzeta[1, 0], -gammaPol1}, {-gammaPol2, -gammaPol1, 2*eps1 + 2*eps2 + U1 + U2}} dim={3, 3} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=2.0816681711721685*^-15 diagvc[{3, 1}] Generating matrix: ham.model..QS_3.1 hamil={{2*eps1 + 2*eps2 + U1 + U2 + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-1.4726024174664412, -1.403307310234689, -1.2409231526683273, -1.2345450277246288, -1.22205302694561, -1.1792735684362254, -1., -0.9376522690202584, -0.841793305054894, -0.7822479517301951, -0.7569619367855789, -0.7518958295111645, -0.6625197366186684, -0.6117726314059284, -0.5678113754467742, -0.5601949247845834, -0.5298964209781889, -0.4398050752154166, -0.337480263381331, -0.2973604866434989} Lowest energies (GS shifted):{0., 0.06929510723175225, 0.23167926479811385, 0.23805738974181234, 0.25054939052083114, 0.2933288490302157, 0.47260241746644116, 0.5349501484461827, 0.6308091124115471, 0.690354465736246, 0.7156404806808623, 0.7207065879552766, 0.8100826808477728, 0.8608297860605127, 0.904791042019667, 0.9124074926818577, 0.9427059964882523, 1.0327973422510246, 1.1351221540851102, 1.1752419308229423} Scale factor SCALE(Ninit):1.0510537250399226 Lowest energies (shifted and scaled):{0., 0.0659291771494556, 0.2204257111493648, 0.22649402601448382, 0.23837924223265983, 0.2790807377796735, 0.44964629895440417, 0.5089655606575806, 0.6001682857720588, 0.65682129208954, 0.6808790679598037, 0.6856990949039278, 0.7707338469467896, 0.8190159699284787, 0.8608418584742659, 0.8680883488112859, 0.8969151376657222, 0.9826303999938685, 1.0799849018583654, 1.1181559066148619} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] s: n_d^2 op.model..QS.n_d^2 nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] - 2*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] d: A_d d ireducTable: d{} s: n_a op.model..QS.n_a nc[a[0, 0], a[1, 0]] + nc[a[0, 1], a[1, 1]] s: n_a^2 op.model..QS.n_a^2 nc[a[0, 0], a[1, 0]] + nc[a[0, 1], a[1, 1]] - 2*nc[a[0, 0], a[0, 1], a[1, 0], a[1, 1]] s: SaSd op.model..QS.SaSd (-nc[a[0, 0], d[0, 0], a[1, 0], d[1, 0]] + nc[a[0, 0], d[0, 1], a[1, 0], d[1, 1]] - 2*nc[a[0, 0], d[0, 1], a[1, 1], d[1, 0]] - 2*nc[a[0, 1], d[0, 0], a[1, 0], d[1, 1]] + nc[a[0, 1], d[0, 0], a[1, 1], d[1, 0]] - nc[a[0, 1], d[0, 1], a[1, 1], d[1, 1]])/4 ireducTable: a[]{} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.055197`5.193460467622791} {ham, 0.16527`4.669739020588957} {maketable, 0.832685`6.372025734837467} {xi, 0.515575`6.163836843943676} {_, 0} data gammaPol=0.252313252202016 "Success!"