NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.0.0 for Linux x86 (64-bit) (July 28, 2016) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module siam.m def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.01, delta -> 0.0001, t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi]} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -delta + U/2 - coefzeta[1, 0] + delta*nc[d[0, 0], d[1, 0]] - (U*nc[d[0, 0], d[1, 0]])/2 + gammaPol*nc[d[0, 0], f[1, 0, 0]] + delta*nc[d[0, 1], d[1, 1]] - (U*nc[d[0, 1], d[1, 1]])/2 + gammaPol*nc[d[0, 1], f[1, 0, 1]] + gammaPol*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPol*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0510537250399226 faktor=1.6479184330021646 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..QS PREC=1000 Tmin=1.*^-10 Tmin=1.*^-10 ==> Nmax=42 DISCNMAX=42 mMAX=84 Diagonalisation. Discretization checksum [-1] (channel 1): 2.784154609541307270170357727625724949`10.*^-41 BAND="flat" thetaCh={"2."} Discretization (channel 1) "xitable" (channel 1) 0.5049098776 0.3180107496 0.195230373 0.1153712823 0.06714955356 0.0388746386 0.02246477381 0.01297399467 0.007491300293 0.004325250724 0.002497212862 0.001441771944 0.0008324084643 0.0004805914519 0.0002774696428 0.0001601971804 0.00009248988666 0.00005339906124 0.00003082996243 0.00001779968712 0.00001027665415 5.933229041e-6 3.425551384e-6 1.977743014e-6 1.141850461e-6 6.592476713e-7 3.806168205e-7 2.197492238e-7 1.268722735e-7 7.324974125e-8 4.229075783e-8 2.441658042e-8 1.409691928e-8 8.138860139e-9 4.698973092e-9 2.71295338e-9 1.566324364e-9 9.043177933e-10 5.221081214e-10 3.014392644e-10 1.740360405e-10 1.004797548e-10 5.801201349e-11 "zetatable" (channel 1) 0.e-999 0.e-998 0.e-998 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-991 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-985 0.e-984 0.e-984 0.e-983 0.e-982 0.e-981 0.e-980 0.e-979 0.e-978 0.e-977 0.e-976 0.e-976 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-969 0.e-968 0.e-968 0.e-967 0.e-966 0.e-965 0.e-964 0.e-963 0.e-962 Precision last xi:952.2651260013099 Precision last zeta: 0. Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , QS}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 42, 6}} maketable[] exnames={d, g, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin} thetaCh={"2."} theta0Ch={"0.0014"} gammaPolCh={"0.021110041228223762"} checkdefinitions[] -> 0.06954016491289505 calcgsenergy[] diagvc[{-2, 1}] Generating matrix: ham.model..QS_-2.1 hamil={{(-2*delta + U - 2*coefzeta[1, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1, 2}] Generating matrix: ham.model..QS_-1.2 hamil={{(-2*delta + U)/2, gammaPol}, {gammaPol, -coefzeta[1, 0]}} dim={2, 2} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=4.440892098500626*^-16 diagvc[{0, 1}] Generating matrix: ham.model..QS_0.1 hamil={{-delta + U/2 + coefzeta[1, 0], Sqrt[2]*gammaPol, 0}, {Sqrt[2]*gammaPol, 0, Sqrt[2]*gammaPol}, {0, Sqrt[2]*gammaPol, delta + U/2 - coefzeta[1, 0]}} dim={3, 3} det[vec]=1. 1-abs=0. orthogonality check=6.661338147750939*^-16 diagvc[{0, 3}] Generating matrix: ham.model..QS_0.3 hamil={{0}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{1, 2}] Generating matrix: ham.model..QS_1.2 hamil={{coefzeta[1, 0], -gammaPol}, {-gammaPol, delta + U/2}} dim={2, 2} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{2, 1}] Generating matrix: ham.model..QS_2.1 hamil={{delta + U/2 + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.03979413962255038, -0.018801737356209422, -0.018713497846245968, 0., 0.0049, 0.00499997195022516, 0.0051, 0.02370173735620942, 0.023813497846245972, 0.04479416767232521} Lowest energies (GS shifted):{0., 0.020992402266340957, 0.02108064177630441, 0.03979413962255038, 0.04469413962255038, 0.04479411157277554, 0.04489413962255038, 0.0634958769787598, 0.06360763746879636, 0.0845883072948756} Scale factor SCALE(Ninit):1.0510537250399226 Lowest energies (shifted and scaled):{0., 0.01997272048633251, 0.020056673863654017, 0.03786118508931488, 0.04252317322870698, 0.042618289156507304, 0.042713458458886244, 0.060411637831689353, 0.06051796968454712, 0.0804795276204008} makeireducf GENERAL ireducTable: f[0]{} Loading module operators.m "operators.m started" s: n_d op.model..QS.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] s: hop0 op.model..QS.hop0 nc[d[0, 0], f[1, 0, 0]] + nc[d[0, 1], f[1, 0, 1]] + nc[f[0, 0, 0], d[1, 0]] + nc[f[0, 0, 1], d[1, 1]] operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m s: myn_d op.model..QS.myn_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] s: corrhop op.model..QS.corrhop nc[f[0, 0, 0], d[1, 0]] + nc[f[0, 0, 1], d[1, 1]] - nc[d[0, 0], d[0, 1], d[1, 0], f[1, 0, 1]] + nc[d[0, 0], d[0, 1], d[1, 1], f[1, 0, 0]] - nc[d[0, 0], f[0, 0, 1], d[1, 0], d[1, 1]] + nc[d[0, 1], f[0, 0, 0], d[1, 0], d[1, 1]] -- maketable[] done -- Timing report {basis, 0.009536`4.4309112358921325} {ham, 0.0323420000000000001`4.183160615890717} {maketable, 0.300947`5.9300350118996334} {xi, 0.559377`6.199249598937924} {_, 0} data gammaPol=0.021110041228223762 "Success!"