NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.0.0 for Linux x86 (64-bit) (July 28, 2016) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module majorana.m def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) + coefdelta[1, 0]*(-nc[f[0, 0, 0], f[0, 0, 1]] + nc[f[1, 0, 0], f[1, 0, 1]]) adddots, nrdots=1 params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0, delta -> 0., t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPol1u -> 0.126156626101008*Sqrt[gammaA*thetaCh[1]], gammaPol2u -> 0.126156626101008*Sqrt[gammaA*thetaCh[1]], gammaPol1d -> 0.126156626101008*Sqrt[gammaA*thetaCh[1]], gammaPol2d -> 0.126156626101008*Sqrt[gammaA*thetaCh[1]], U -> 0, eps -> 0, Bx -> 0, By -> 0, Bz -> 0, Vd -> 0., Vu -> 0., Gamma1d -> 0.05, Gamma2d -> 0.05, Gamma1u -> 0.05, Gamma2u -> 0.05} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. Vd/2 + Vu/2 - coefzeta[1, 0] - (Bz*nc[d[0, 0], d[1, 0]])/2 + eps*nc[d[0, 0], d[1, 0]] - Vd*nc[d[0, 0], d[1, 0]] + (Bx*nc[d[0, 0], d[1, 1]])/2 + I/2*By*nc[d[0, 0], d[1, 1]] + I/2*gammaPol1d*nc[d[0, 0], f[0, 0, 0]] - I/2*gammaPol2d*nc[d[0, 0], f[0, 0, 0]] + I/2*gammaPol1d*nc[d[0, 0], f[1, 0, 0]] + I/2*gammaPol2d*nc[d[0, 0], f[1, 0, 0]] + (Bx*nc[d[0, 1], d[1, 0]])/2 - I/2*By*nc[d[0, 1], d[1, 0]] + (Bz*nc[d[0, 1], d[1, 1]])/2 + eps*nc[d[0, 1], d[1, 1]] - Vu*nc[d[0, 1], d[1, 1]] + I/2*gammaPol1u*nc[d[0, 1], f[0, 0, 1]] - I/2*gammaPol2u*nc[d[0, 1], f[0, 0, 1]] + I/2*gammaPol1u*nc[d[0, 1], f[1, 0, 1]] + I/2*gammaPol2u*nc[d[0, 1], f[1, 0, 1]] + I/2*gammaPol1d*nc[d[1, 0], f[1, 0, 0]] - I/2*gammaPol2d*nc[d[1, 0], f[1, 0, 0]] + I/2*gammaPol1u*nc[d[1, 1], f[1, 0, 1]] - I/2*gammaPol2u*nc[d[1, 1], f[1, 0, 1]] - I/2*gammaPol1d*nc[f[0, 0, 0], d[1, 0]] - I/2*gammaPol2d*nc[f[0, 0, 0], d[1, 0]] - coefdelta[1, 0]*nc[f[0, 0, 0], f[0, 0, 1]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] - I/2*gammaPol1u*nc[f[0, 0, 1], d[1, 1]] - I/2*gammaPol2u*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] + coefdelta[1, 0]*nc[f[1, 0, 0], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0510537250399226 faktor=1.6479184330021646 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..NONE PREC=1000 Tmin=1.*^-10 Tmin=1.*^-10 ==> Nmax=42 DISCNMAX=42 mMAX=84 Diagonalisation. Discretization checksum [-1] (channel 1): 2.784154609541307270170357727625724949`10.*^-41 BAND="flat" thetaCh={"2."} Discretization (channel 1) "xitable" (channel 1) 0.5049098776 0.3180107496 0.195230373 0.1153712823 0.06714955356 0.0388746386 0.02246477381 0.01297399467 0.007491300293 0.004325250724 0.002497212862 0.001441771944 0.0008324084643 0.0004805914519 0.0002774696428 0.0001601971804 0.00009248988666 0.00005339906124 0.00003082996243 0.00001779968712 0.00001027665415 5.933229041e-6 3.425551384e-6 1.977743014e-6 1.141850461e-6 6.592476713e-7 3.806168205e-7 2.197492238e-7 1.268722735e-7 7.324974125e-8 4.229075783e-8 2.441658042e-8 1.409691928e-8 8.138860139e-9 4.698973092e-9 2.71295338e-9 1.566324364e-9 9.043177933e-10 5.221081214e-10 3.014392644e-10 1.740360405e-10 1.004797548e-10 5.801201349e-11 "zetatable" (channel 1) 0.e-999 0.e-998 0.e-998 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-991 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-985 0.e-984 0.e-984 0.e-983 0.e-982 0.e-981 0.e-980 0.e-979 0.e-978 0.e-977 0.e-976 0.e-976 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-969 0.e-968 0.e-968 0.e-967 0.e-966 0.e-965 0.e-964 0.e-963 0.e-962 Precision last xi:952.2651260013099 Precision last zeta: 0. "scdeltatable" (channel 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "sckappatable" (channel 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , NONE}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 42, 1}} maketable[] exnames={Bx, By, Bz, d, eps, g, Gamma1, Gamma11, Gamma12, Gamma1d, Gamma1u, Gamma2, Gamma21, Gamma22, Gamma2d, Gamma2to2, Gamma2u, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U, Vd, Vu} thetaCh={"2."} theta0Ch={"0.2"} gammaPolCh={"0.252313252202016"} checkdefinitions[] -> 0. + 0.*I calcgsenergy[] diagvc[{0}] Generating matrix: ham.model..NONE_0 hamil={{(Vd + Vu - 2*coefzeta[1, 0])/2, 0, 0, coefdelta[1, 0], 0, -I/2*(gammaPol1d - gammaPol2d), 0, 0, 0, 0, -I/2*(gammaPol1u - gammaPol2u), 0, 0, 0, 0, 0}, {0, (Vd + Vu)/2, 0, 0, -I/2*(gammaPol1d + gammaPol2d), 0, 0, 0, 0, 0, 0, -I/2*(gammaPol1u - gammaPol2u), 0, 0, 0, 0}, {0, 0, (Vd + Vu)/2, 0, 0, 0, 0, I/2*(gammaPol1d - gammaPol2d), -I/2*(gammaPol1u + gammaPol2u), 0, 0, 0, 0, 0, 0, 0}, {coefdelta[1, 0], 0, 0, (Vd + Vu + 2*coefzeta[1, 0])/2, 0, 0, I/2*(gammaPol1d + gammaPol2d), 0, 0, -I/2*(gammaPol1u + gammaPol2u), 0, 0, 0, 0, 0, 0}, {0, I/2*(gammaPol1d + gammaPol2d), 0, 0, (-Bz + 2*eps - Vd + Vu - 2*coefzeta[1, 0])/2, 0, 0, coefdelta[1, 0], (Bx + I*By)/2, 0, 0, 0, 0, 0, I/2*(gammaPol1u - gammaPol2u), 0}, {I/2*(gammaPol1d - gammaPol2d), 0, 0, 0, 0, (-Bz + 2*eps - Vd + Vu)/2, 0, 0, 0, (Bx + I*By)/2, 0, 0, 0, 0, 0, I/2*(gammaPol1u - gammaPol2u)}, {0, 0, 0, -I/2*(gammaPol1d + gammaPol2d), 0, 0, (-Bz + 2*eps - Vd + Vu)/2, 0, 0, 0, (Bx + I*By)/2, 0, I/2*(gammaPol1u + gammaPol2u), 0, 0, 0}, {0, 0, -I/2*(gammaPol1d - gammaPol2d), 0, coefdelta[1, 0], 0, 0, (-Bz + 2*eps - Vd + Vu + 2*coefzeta[1, 0])/2, 0, 0, 0, (Bx + I*By)/2, 0, I/2*(gammaPol1u + gammaPol2u), 0, 0}, {0, 0, I/2*(gammaPol1u + gammaPol2u), 0, (Bx - I*By)/2, 0, 0, 0, (Bz + 2*eps + Vd - Vu - 2*coefzeta[1, 0])/2, 0, 0, coefdelta[1, 0], 0, -I/2*(gammaPol1d - gammaPol2d), 0, 0}, {0, 0, 0, I/2*(gammaPol1u + gammaPol2u), 0, (Bx - I*By)/2, 0, 0, 0, (Bz + 2*eps + Vd - Vu)/2, 0, 0, -I/2*(gammaPol1d + gammaPol2d), 0, 0, 0}, {I/2*(gammaPol1u - gammaPol2u), 0, 0, 0, 0, 0, (Bx - I*By)/2, 0, 0, 0, (Bz + 2*eps + Vd - Vu)/2, 0, 0, 0, 0, I/2*(gammaPol1d - gammaPol2d)}, {0, I/2*(gammaPol1u - gammaPol2u), 0, 0, 0, 0, 0, (Bx - I*By)/2, coefdelta[1, 0], 0, 0, (Bz + 2*eps + Vd - Vu + 2*coefzeta[1, 0])/2, 0, 0, I/2*(gammaPol1d + gammaPol2d), 0}, {0, 0, 0, 0, 0, 0, -I/2*(gammaPol1u + gammaPol2u), 0, 0, I/2*(gammaPol1d + gammaPol2d), 0, 0, 2*eps + U - Vd/2 - Vu/2 - coefzeta[1, 0], 0, 0, coefdelta[1, 0]}, {0, 0, 0, 0, 0, 0, 0, -I/2*(gammaPol1u + gammaPol2u), I/2*(gammaPol1d - gammaPol2d), 0, 0, 0, 0, 2*eps + U - Vd/2 - Vu/2, 0, 0}, {0, 0, 0, 0, -I/2*(gammaPol1u - gammaPol2u), 0, 0, 0, 0, 0, 0, -I/2*(gammaPol1d + gammaPol2d), 0, 0, 2*eps + U - Vd/2 - Vu/2, 0}, {0, 0, 0, 0, 0, -I/2*(gammaPol1u - gammaPol2u), 0, 0, 0, 0, -I/2*(gammaPol1d - gammaPol2d), 0, coefdelta[1, 0], 0, 0, 2*eps + U - Vd/2 - Vu/2 + coefzeta[1, 0]}} dim={16, 16} det[vec]=0.1442135909763868 + 0.9895465831266843*I 1-abs=-2.220446049250313*^-16 orthogonality check=9.39874298185316*^-15 Lowest energies (absolute):{-0.35682482323055453, -0.17841241161527724, -0.17841241161527716, -0.17841241161527716, -0.1784124116152771, -1.9923934668263317*^-52, 0., 0., 0., 0., 5.1485419233018553*^-51, 0.17841241161527707, 0.1784124116152771, 0.1784124116152772, 0.17841241161527724, 0.3568248232305543} Lowest energies (GS shifted):{0., 0.1784124116152773, 0.17841241161527738, 0.17841241161527738, 0.17841241161527743, 0.35682482323055453, 0.35682482323055453, 0.35682482323055453, 0.35682482323055453, 0.35682482323055453, 0.35682482323055453, 0.5352372348458316, 0.5352372348458316, 0.5352372348458317, 0.5352372348458317, 0.7136496464611088} Scale factor SCALE(Ninit):1.0510537250399226 Lowest energies (shifted and scaled):{0., 0.16974623405525782, 0.1697462340552579, 0.1697462340552579, 0.16974623405525796, 0.3394924681105156, 0.3394924681105156, 0.3394924681105156, 0.3394924681105156, 0.3394924681105156, 0.3394924681105156, 0.5092387021657733, 0.5092387021657733, 0.5092387021657734, 0.5092387021657734, 0.678984936221031} makeireducf NONE/P/PP ireducTable: f[0]{0} ireducTable: f[0]{1} ireducTable: f[0]{2} ireducTable: f[0]{3} Loading module operators.m "operators.m started" s: n_d op.model..NONE.n_d nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] s: n_d^2 op.model..NONE.n_d^2 nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]] - 2*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004322`4.087229756043198} {ham, 0.132005`5.572135374938824} {maketable, 0.579707`6.214753538032723} {xi, 0.546546`6.18917171368003} {_, 0} data gammaPol=0.252313252202016 "Success!"