NRG Ljubljana (c) Rok Zitko, rok.zitko@ijs.si, 2005-2018 Mathematica version: 11.3.0 for Linux x86 (64-bit) (March 7, 2018) sneg version: 1.250 Loading module initialparse.m Options: {} Loading module models.m "models started" Loading module custommodels.m models $Id: custommodels.m,v 1.1 2015/11/09 12:23:47 rokzitko Exp rokzitko $ custommodels.m done Loading module siam.m def1ch, NRDOTS=1 COEFCHANNELS:1 H0=coefzeta[1, 0]*(-1 + nc[f[0, 0, 0], f[1, 0, 0]] + nc[f[0, 0, 1], f[1, 0, 1]]) adddots, nrdots=1 UpSet::write: Tag Gamma in isnumericQ[Gamma] is Protected. UpSet::write: Tag Gamma in Conjugate[Gamma] is Protected. params={gammaPol -> Sqrt[gammaA*theta0]/Sqrt[Pi], gammaPolCh[ch_] :> Sqrt[1/Pi*theta0Ch[ch]*gammaA], hybV[i_, j_] :> Sqrt[1/Pi]*V[i, j], coefzeta[ch_, j__] :> N[bandrescale*zeta[ch][j]], coefxi[ch_, j__] :> N[bandrescale*xi[ch][j]], coefrung[ch_, j__] :> N[bandrescale*zetaR[ch][j]], coefdelta[ch_, j__] :> N[bandrescale*scdelta[ch][j]], coefkappa[ch_, j__] :> N[bandrescale*sckappa[ch][j]], U -> 0.01, delta -> 0, t -> 0., gammaPol2 -> Sqrt[extraGamma2*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPol2to2 -> Sqrt[extraGamma2to2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch1 -> Sqrt[extraGamma1*gammaA*thetaCh[1]]/Sqrt[Pi], gammaPolch2 -> Sqrt[extraGamma2*gammaA*thetaCh[2]]/Sqrt[Pi], gammaPolch3 -> Sqrt[extraGamma3*gammaA*thetaCh[3]]/Sqrt[Pi], Jspin -> extraJspin*gammaA, Jcharge -> extraJcharge*gammaA, Jcharge1 -> extraJcharge1*gammaA, Jcharge2 -> extraJcharge2*gammaA, Jkondo -> extraJkondo*gammaA, Jkondo1 -> extraJkondo1*gammaA, Jkondo2 -> extraJkondo2*gammaA, Jkondo3 -> extraJkondo3*gammaA, Jkondo1P -> extraJkondo1P*gammaA, Jkondo2P -> extraJkondo2P*gammaA, Jkondo1Z -> extraJkondo1Z*gammaA, Jkondo2Z -> extraJkondo2Z*gammaA, JkondoP -> extraJkondoP*gammaA, JkondoZ -> extraJkondoZ*gammaA, Jkondo1ch2 -> extraJkondo1ch2*gammaA, Jkondo2ch2 -> extraJkondo2ch2*gammaA, gep -> extrag, dd -> extrad, hybV11 -> Sqrt[extraGamma11*gammaA*thetaCh[1]]/Sqrt[Pi], hybV12 -> Sqrt[extraGamma12*gammaA*thetaCh[2]]/Sqrt[Pi], hybV21 -> Sqrt[extraGamma21*gammaA*thetaCh[1]]/Sqrt[Pi], hybV22 -> Sqrt[extraGamma22*gammaA*thetaCh[2]]/Sqrt[Pi], U -> 0.01, Gamma -> 0.001, delta -> 0, B -> 0.00005} NRDOTS:1 CHANNELS:1 basis:{d[], f[0]} lrchain:{} lrextrarule:{} NROPS:2 Hamiltonian generated. -delta + U/2 - coefzeta[1, 0] - (B*nc[d[0, 0], d[1, 0]])/2 + delta*nc[d[0, 0], d[1, 0]] - (U*nc[d[0, 0], d[1, 0]])/2 + gammaPol*nc[d[0, 0], f[1, 0, 0]] + (B*nc[d[0, 1], d[1, 1]])/2 + delta*nc[d[0, 1], d[1, 1]] - (U*nc[d[0, 1], d[1, 1]])/2 + gammaPol*nc[d[0, 1], f[1, 0, 1]] + gammaPol*nc[f[0, 0, 0], d[1, 0]] + coefzeta[1, 0]*nc[f[0, 0, 0], f[1, 0, 0]] + gammaPol*nc[f[0, 0, 1], d[1, 1]] + coefzeta[1, 0]*nc[f[0, 0, 1], f[1, 0, 1]] - U*nc[d[0, 0], d[0, 1], d[1, 0], d[1, 1]] H-conj[H]=0 SCALE[0]=1.0201394465967895 faktor=1.3862943611198906 Generating basis Basis states generated. BASIS NR=16 Basis: basis.model..U1 PREC=1000 Tmin=1.*^-10 Tmin=1.*^-10 ==> Nmax=66 DISCNMAX=66 mMAX=132 Diagonalisation. Discretization checksum [-1] (channel 1): 9.183549615799121156005754197048794358`10.*^-41 BAND="flat" thetaCh={"2."} Discretization (channel 1) "xitable" (channel 1) 0.5452874708 0.4155094683 0.3218991777 0.2402694095 0.1749149188 0.1255632919 0.08947082529 0.06351086931 0.04499637947 0.03184826349 0.02253110984 0.01593578852 0.01126967936 0.007969353023 0.005635355527 0.003984858909 0.002817742254 0.001992452256 0.001408879189 0.0009962289782 0.000704440602 0.0004981148454 0.000352220427 0.0002490574672 0.0001761102292 0.0001245287392 0.00008805511659 0.00006226437029 0.00004402755854 0.00003113218523 0.0000220137793 0.00001556609263 0.00001100688965 7.783046315e-6 5.503444827e-6 3.891523157e-6 2.751722414e-6 1.945761579e-6 1.375861207e-6 9.728807894e-7 6.879306035e-7 4.864403947e-7 3.439653017e-7 2.432201973e-7 1.719826509e-7 1.216100987e-7 8.599132543e-8 6.080504934e-8 4.299566272e-8 3.040252467e-8 2.149783136e-8 1.520126233e-8 1.074891568e-8 7.600631167e-9 5.374457839e-9 3.800315583e-9 2.68722892e-9 1.900157792e-9 1.34361446e-9 9.500788959e-10 6.718072299e-10 4.750394479e-10 3.35903615e-10 2.37519724e-10 1.679518075e-10 1.18759862e-10 8.397590374e-11 "zetatable" (channel 1) 0.e-999 0.e-998 0.e-997 0.e-997 0.e-996 0.e-995 0.e-994 0.e-993 0.e-992 0.e-991 0.e-991 0.e-990 0.e-989 0.e-988 0.e-987 0.e-986 0.e-986 0.e-985 0.e-984 0.e-983 0.e-982 0.e-981 0.e-981 0.e-980 0.e-979 0.e-978 0.e-977 0.e-976 0.e-975 0.e-975 0.e-974 0.e-973 0.e-972 0.e-971 0.e-970 0.e-970 0.e-969 0.e-968 0.e-967 0.e-966 0.e-965 0.e-964 0.e-964 0.e-963 0.e-962 0.e-961 0.e-960 0.e-959 0.e-959 0.e-958 0.e-957 0.e-956 0.e-955 0.e-954 0.e-953 0.e-953 0.e-952 0.e-951 0.e-950 0.e-949 0.e-948 0.e-948 0.e-947 0.e-946 0.e-945 0.e-944 0.e-943 Precision last xi:933.5703195222272 Precision last zeta: 0. Discretization done. --EOF-- {{# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015}, {# symtype , U1}, {# Using sneg version , 1.250}, {#!8}, {# Number of channels, impurities, chain sites, subspaces: }, {1, 1, 66, 5}} maketable[] exnames={B, d, delta, g, Gamma, Gamma1, Gamma11, Gamma12, Gamma2, Gamma21, Gamma22, Gamma2to2, Gamma3, Jcharge, Jcharge1, Jcharge2, Jkondo, Jkondo1, Jkondo1ch2, Jkondo1P, Jkondo1Z, Jkondo2, Jkondo2ch2, Jkondo2P, Jkondo2Z, Jkondo3, JkondoP, JkondoZ, Jspin, U} UpSet::write: Tag Gamma in isnumericQ[Gamma] is Protected. UpSet::write: Tag Gamma in Conjugate[Gamma] is Protected. thetaCh={"2."} theta0Ch={"0.002"} gammaPolCh={"0.025231325220201602"} checkdefinitions[] -> 0.0859253008808064 calcgsenergy[] diagvc[{-2}] Generating matrix: ham.model..U1_-2 hamil={{(-2*delta + U - 2*coefzeta[1, 0])/2}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. diagvc[{-1}] Generating matrix: ham.model..U1_-1 hamil={{(-2*delta + U)/2, 0, gammaPol, 0}, {0, (-2*delta + U)/2, 0, gammaPol}, {gammaPol, 0, -B/2 - coefzeta[1, 0], 0}, {0, gammaPol, 0, (B - 2*coefzeta[1, 0])/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=8.881784197001252*^-16 diagvc[{0}] Generating matrix: ham.model..U1_0 hamil={{-delta + U/2 + coefzeta[1, 0], 0, -gammaPol, gammaPol, 0, 0}, {0, -B/2, 0, 0, 0, 0}, {-gammaPol, 0, -B/2, 0, 0, -gammaPol}, {gammaPol, 0, 0, B/2, 0, gammaPol}, {0, 0, 0, 0, B/2, 0}, {0, 0, -gammaPol, gammaPol, 0, delta + U/2 - coefzeta[1, 0]}} dim={6, 6} det[vec]=-1.0000000000000002 1-abs=-2.220446049250313*^-16 orthogonality check=1.3714073279769146*^-15 diagvc[{1}] Generating matrix: ham.model..U1_1 hamil={{-B/2 + coefzeta[1, 0], 0, -gammaPol, 0}, {0, B/2 + coefzeta[1, 0], 0, -gammaPol}, {-gammaPol, 0, delta + U/2, 0}, {0, -gammaPol, 0, delta + U/2}} dim={4, 4} det[vec]=1. 1-abs=0. orthogonality check=8.881784197001252*^-16 diagvc[{2}] Generating matrix: ham.model..U1_2 hamil={{delta + U/2 + coefzeta[1, 0]}} dim={1, 1} det[vec]=1. 1-abs=0. orthogonality check=0. Lowest energies (absolute):{-0.048024546307128935, -0.022868612253608228, -0.022868612253608225, -0.022841147244875466, -0.022841147244875463, -0.000025, 1.2271843243530402*^-9, 0.000025, 0.005, 0.005, 0.005000000000000004, 0.027843612253608225, 0.02784361225360823, 0.027866147244875464, 0.027866147244875468, 0.05302454507994461} Lowest energies (GS shifted):{0., 0.025155934053520707, 0.02515593405352071, 0.02518339906225347, 0.025183399062253472, 0.04799954630712894, 0.04802454753431326, 0.04804954630712893, 0.05302454630712893, 0.05302454630712893, 0.05302454630712894, 0.07586815856073716, 0.07586815856073717, 0.0758906935520044, 0.0758906935520044, 0.10104909138707355} Scale factor SCALE(Ninit):1.0201394465967895 Lowest energies (shifted and scaled):{0., 0.024659309212521414, 0.024659309212521418, 0.024686232010992137, 0.02468623201099214, 0.04705194615035877, 0.04707645380690292, 0.0471009590575322, 0.05197774332128822, 0.05197774332128822, 0.051977743321288225, 0.07437038025912557, 0.07437038025912558, 0.07439247036782827, 0.07439247036782827, 0.09905419472227628} makeireducf U1 ireducTable: f[0]{1} ireducTable: f[0]{0} Loading module operators.m "operators.m started" ireducTable: d[#1, #2] & {1} ireducTable: d[#1, #2] & {0} s: SXd op.model..U1.SXd (nc[d[0, 0], d[1, 1]] + nc[d[0, 1], d[1, 0]])/2 s: SYd op.model..U1.SYd I/2*(nc[d[0, 0], d[1, 1]] - nc[d[0, 1], d[1, 0]]) s: SZd op.model..U1.SZd (-nc[d[0, 0], d[1, 0]] + nc[d[0, 1], d[1, 1]])/2 operators.m done Loading module customoperators.m "customoperators $Id: customoperators.m,v 1.1 2015/11/09 12:23:54 rokzitko Exp rokzitko $" Customoperators done. Loading module modeloperators.m Can't load modeloperators.m. Continuing. -- maketable[] done -- Timing report {basis, 0.004917`4.1432452017861365} {ham, 0.0363639999999999999`4.313246638252798} {maketable, 0.479028`6.131905892902382} {xi, 0.978598`6.442149317335742} {_, 0} data gammaPol=0.0252313252202016 "Success!"