
SNEG - Mathematica package for symbolic calculations with
second-quantization-operator expressions

Rok Žitkoa

aJ. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

Abstract

In many-particle problems involving interacting fermions or bosons, the most natural language for expressing
the Hamiltonian, the observables, and the basis states is that of the second-quantization operators. It thus
appears advantageous to write numerical computer codes which allow one to define the problem and the
quantities of interest directly in terms of operator strings, rather than in some low-level programming
language. Here I describe a Mathematica package which provides a flexible framework for performing the
required symbolic calculations. It consists of a collection of transformation rules that define the algebra of
operators and a comprehensive library of utility functions. While the emphasis is given on the problems
from solid-state and atomic physics, the package can be easily adapted to any given problem involving
non-commuting operators.

Key words: symbolic manipulation, second quantization operators, Wick’s theorem, occupation number
representation, bra-ket notation

PROGRAM SUMMARY
Manuscript Title: SNEG - Mathematica package for symbolic calculations with second-quantization-operator expres-

sions

Author: Rok Žitko

Progam Title: SNEG

Journal Reference:

Catalogue identifier:

Licensing provisions: GNU Public License

Programming language: Mathematica

Computer: any computer which runs Mathematica

Operating system: any OS which runs Mathematica

RAM: problem dependent

Number of processors used: 1

Supplementary material:

Keywords: second quantization, non-commuting operators, commutators, Wick’s theorem, Dirac bra-ket notation

Classification: 2.9 Theoretical methods, 5 Computer algebra, 6.2 Languages

External routines/libraries:

Subprograms used:

Nature of problem: Manipulation of expressions involving second quantization operators and other non-commuting

objects. Calculation of commutators, anticommutators, expectation values. Generation of matrix representations of

the Hamiltonians expressed in the second quantization language.

Solution method: Automatic reordering of operator strings in some well specified canonical order; (anti)commutation

rules are used where needed. States may be represented in occupation-number representation. Dirac bra-ket notation

may be intermixed with non-commuting operator expressions.

Email address: rok.zitko@ijs.si (Rok Žitko)

Preprint submitted to Elsevier September 16, 2010

Restrictions: For long operator strings, the brute-force automatic reordering becomes slow, but it can be turned off.

In such cases, the expectation values may still be evaluated using Wick’s theorem.

Unusual features: SNEG also provides the natural notation of second-quantization operators (dagger for creation

operators, etc.) when used interactively using the Mathematica notebook interface.

Additional comments:

Running time: problem dependent

1. Introduction

Computational science has emerged as the third paradigm of science, complementing experiments and
theory. Computers are now used to simulate realistic physical systems which are not accessible to experiments
or would be simply too expensive to study directly. They also allow numerical treatment of theoretical
models which cannot be solved by analytical means nor by simple approximations. In this field, it is still
common practice to quickly write ad-hoc computer codes for performing calculations for specific problems.
In these rapidly developed computer programs the problem definition and the quantities of interest are
typically hard-coded using the same low-level programming language which is also used to implement the
method of solution. In more technical terms, the problem-domain and the solution-domain languages tend
to coincide. As the scientific interests change with time, such codes often undergo successive modifications
and adaptations, often leading to maintainability issues or even bugs. In software engineering, the proposed
solution to such difficulties is to use a domain-specific language (DSL), i.e., a specification language adapted
to a particular problem domain. Using a DSL, the problem can be expressed significantly more clearly than
allowed by low-level languages. In the field of many-particle physics, such a language already exists: the
language of strings of second-quantization operators (particle creation and annihilation operators) in terms of
which it possible to express the problem (the Hamiltonian), the quantities of interest (the observables), and
the domain of definition (the basis states defined by the creation operators applied to some vacuum state).
Using an appropriate notation is equally important: the operators are usually expressed as single-character
symbols, possibly with further indexes, and a dagger is used to distinguish creation from annihilation
operators. The computer algebra system Mathematica makes it possible to both easily define the DSLs and
to establish a suitable notation for these DSLs. In this article I describe package SNEG, which implements
a DSL for second-quantization expressions and provides the corresponding natural notation. In addition to
facilitating the representation of the input to numerical codes, the package is powerful enough to perform
some calculations directly (e.g., evaluation of the expectation values using Wick’s theorem, calculation and
simplification of operator commutators, etc.).

This paper is structured as follows. Section 2 is devoted to the specification of basic elements (operators),
their concatenation (non-commutative multiplication) and their automatic reordering (according to the
canonical commutation/anticommutation rules or some other specification); it also introduces the Dirac
bra-ket notation which can be mixed with the second-quantization operator expressions, and the occupation-
number-representation vectors. Section 3 describes a number of higher-level routines for generating second-
quantization expression (particle number and spin operators, etc.) and their manipulation (commutators and
anticommutators, etc.). Section 4 details the utility routines for generating basis states which satisfy chosen
symmetries (particle number conservation, rotational invariance in the spin space) as well as the routines
for generating the matrix representations of operator expressions in given basis space; these routines are
crucial for the applications of SNEG as an input preprocessor for lower-level numerical computer codes. The
focus of Section 5 are symbolic sums with dummy indexes and their automated simplification using pattern
matching. Finally, Section 6 describes a successful use of SNEG in the numerical renormalization group
package “NRG Ljubljana”.

The package SNEG comes with detailed documentation which integrates in the Mathematica interactive
help system. Each SNEG function is carefully documented and examples are provided. For this reason,
the syntax of function calls is not described in this article; instead, the focus here is on the basic concepts,
design choices, conventions followed, and applications.

2

SNEG is released under the GNU Public License (GPL) and the most recently updated version is available
from http://nrgljubljana.ijs.si/sneg. The package comes with a standard battery of test cases which
may be used as a regression test, but also to verify that the possible user’s custom extensions do not interfere
with the expected behavior of the library.

While there are other packages for symbolic calculations with non-commuting objects for Mathematica
and for other computer algebra systems (supercalc [1], ccr car algebra [2], NCComAlgebra [3], grassmann.m
[4], grassmannOps.m [5]), none appears to have the scope or generality of SNEG. Furthermore, the goal of
SNEG is different from more specialized symbolic manipulation packages such as TCE [6, 7] for performing
many-body perturbation theory in quantum chemistry or FormCalc [8] for calculations in theoretical high-
energy physics. Instead, SNEG is principally intended to provide a general framework in which more
sophisticated solutions can be implemented or as a tool that provides a more natural interface to the user.

2. Foundations

The cornerstone of SNEG is a definition of non-commutative multiplication with automatic reordering of
operators in some standard form (usually the conventional normal ordering with creation operators preceding
the annihilation operators) which takes into account selected (anti)commutation rules. Use of the standard
form reordering allows automatic simplifications of expressions. This section describes the low-level aspects
of the library: objects representing operators and numbers (constants), non-commutative multiplication,
expression reordering, vacuum state objects, occupation-number-representation objects, and support for the
Dirac’s bra-ket notation.

2.1. Operator objects and numeric objects
In SNEG, operators are represented as Mathematica expressions (lists) with a chosen head (typically a

single-letter symbol) and containing the necessary indexes as list elements, for example

a[], c[k, sigma]. (1)

The symbols need to be explicitly declared before they are used with one of the declaration routines:
snegbosonoperators, snegfermionoperators, snegmajoranaoperators, or snegspinoperators. The
declaration routines define the default (anti)commutation properties of the objects. They also establish
the natural on-screen notation (“pretty-printing”) when the package is used interactively using the Math-
ematica notebook interface. Both the (anti)commutation properties and the pretty-printing can be later
modified according to the user’s requirements. For operators declared to be bosons or fermions, the first
element of the list (i.e., the first “index”) has a special role: it distinguishes creation operators (CR=0) and
annihilation operators (AN=1):

c[CR, k] → c†k, c[AN, k] → ck. (2)

In addition, for fermions, by default SNEG follows the convention that the last index is interpreted as the
particle spin (DO=↓=0 and UP=↑=1); this convention is used when generating operator expressions using
higher-level functions (see below) and when pretty-printing the expressions on computer display:

c[CR, k, UP] → c†k↑, c[CR, k, DO] → c†k↓. (3)

A similar convention is applied to operators that are declared to be spin operators: the last index denotes
the spin component (x=1, y=2, z=3, p=4, m=5; the latter two denote the spin-raising and spin-lowering
operators). The operator nature of operator objects can be tested using function operatorQ, and more
specifically with fermionQ, bosonQ, majoranaQ, and spinQ.

Fermionic operators with different symbols are assumed to anticommute, bosonic operators with different
symbols are assumed to commute, and bosonic and fermionic are assumed to commute. If necessary, this
default behavior can be overridden.

SNEG allows to explicitly declare certain symbols to be numeric quantities of specific kinds; this in-
formation is used to correctly factor out numeric objects from the operator strings. The related functions

3

are snegintegerconstants, snegrealconstants, snegcomplexconstants, sneggrassmanconstants, and
snegfreeindexes. The first four are self-explaining, while the last one declares indexes which are allowed
to appear as dummy summation indexes in symbolic sum expressions; this is required to facilitate the au-
tomatic simplification of such expressions. The numeric nature of declared symbols can be tested using the
function isnumericQ. The distinction between real and complex numeric quantities is used in the function
conj to correctly conjugate an operator expression. Finally, it should be noted that the Grassman variables
are correctly anticommuted and that z2 = 0.

2.2. Non-commutative multiplication
In SNEG, the non-commutative multiplication is denoted by nc. In interactive sessions nc multiplications

are pretty printed with centered dots between the terms, for example:

nc[c[CR, k, UP], c[AN, k, UP]] → c†k↑ · ck↑. (4)

The dot is displayed in order to permit easy detection of possible errors arising from an inadvertent replace-
ment of non-commutative with the usual commutative multiplication. (In this article, the centered dot will
be used for a similar purpose: to indicate places where noncommutitave multiplication is performed. This
will only be done, however, where this is necessary for clarity or in order to avoid any possible confusion.)
Function nc is linear in all its arguments, for example:

nc[a + b, c] = nc[a, c] + nc[b, c], nc[z a, b] = z nc[a, b], (5)

where z is a numeric quantity, and it is associative:

nc[nc[a, b], c] = nc[a, b, c]. (6)

Furthermore, nc[]=1 and nc[c]=c; these two rules mimic the behavior of the standard Mathematica
product function Times and imply the property of idempotency of multiplication. Note that nc, unlike
Times, does not have the attributes Flat and OneIdentity. Instead, the associativity property is explicitly
implemented. This design choice was motivated by reasons of efficiency in the pattern matching. Unlike
Times, nc also does not have the attribute Orderless, for obvious reasons.

Finally, it should be mentioned that the exponentiation of an operator should be performed using the
SNEG function pow, rather than with the Mathematica built-in Power, i.e. one should write pow[a[],2]
rather than a[]2̂.

2.3. Expression reordering
Computer algebra systems simplify expressions by ordering them in some canonical manner; in this way,

the equivalent parts can be combined (or canceled out, if the prefactors sum to zero). This is how some
simplifications are automatically effected in Mathematica. For this reason, SNEG also attempts to reorder
multiplicands in the nc operator strings according to some canonical order, using the associated canonical
anticommutation and commutation rules for the operators.

By default, fermionic operators are sorted canonically (in the sense that creation operators are permuted
to the left and annihilation operators to the right – note that this simply corresponds to sorting according
to the first index, CR=0 or AN=1) and then by the remaining indexes, including spin as the last index. It has
to be remarked, however, that the canonical order depends on the definition of the vacuum state. SNEG
supports either an “empty band” vacuum with no particles present, or a “Fermi sea” vacuum with levels
filled up to the Fermi level; this is controlled by setting the value of ordering to EMPTY or SEA for the specific
symbol. The “Fermi sea” case can also be applied to atomic systems where one distinguishes between core,
virtual and valence orbitals, and a quasi-vacuum state with occupied core orbitals is used.

The default ordering is that of an “empty band”, thus the value of the first index (CR or AN) fully deter-
mines whether an operator is a creation or an annihilation operator. The type (annihilation vs. creation) of
the operator can be tested using the functions isannihilation and iscreation. In the case of “Fermi sea”

4

ordering, the second index of the operator is tested by default. This index is assumed to be a “momentum”
or “energy” index, with the Fermi sea fixed at zero. Thus

iscreation[c[CR, k]] → True, k > 0,
iscreation[c[CR, k]] → False, k < 0.

(7)

If a different convention is required, the user has to redefine the functions isannihilation and iscreation.
If necessary, it is also possible to turn off the automatic reordering for a fermionic operator by setting
ordering to NONE. This is useful for very long expressions which can be simplified more efficiently by
explicitly using Wick’s theorem (see below) rather than by automatic operator reordering.

Internally, the operator ordering is tested with snegOrderedQ, while the necessary transformations on
the operator strings (when out-of-order parts are detected) are implemented as transformation rules for the
function nc.

By default, the canonical commutation relations (CCR) apply for bosonic operators:

[ai, aj] = 0, [a†i , a
†
j] = 0, [ai, a

†
j] = δi,j , (8)

while the canonical anti-commutation relations (CAR) apply for fermionic operators:

{ai, aj} = 0, {a†i , a†j} = 0, {ai, a
†
j} = δi,j . (9)

These can be overridden by redefining SNEG functions cmt and acmt, for example to generalize the relations
to the case of non-orthonormal basis sets.

The Pauli rule for (complex) Dirac fermionic operators is implemented as a pattern which sets to zero all
expressions in which two identical fermionic operators appear consecutively. For (real) Majorana fermionic
operators, the default behavior is to replace pairs of identical consecutive operators by 1/2. It should be
noted that ψ2 = 1/2 is not the only convention and that, instead, some people define ψ2 = 1.

Bosonic and spin operators are reordered according to the indexes; for bosons, this implies canonical
ordering with the creation operators to the left of the annihilation operators. When operators of different
types appear in the same product, they are disentangled. For example, bosonic operators are by default
always commuted to the left of fermionic operators, Majorana fermionic operators are anti-commuted to the
left of the Dirac fermionic operators, etc.

Finally, it should be recalled that automatic reordering is also implemented for the anti-commuting
Grassman numbers if they are declared using sneggrassmanconstants.

2.4. Advanced automatic simplifications
SNEG will attempt to simplify expressions involving exponential functions of operators. Using the

Baker-Hausdorff relations, one has for example

eAeB → eA+B if [A,B] = 0,

eAeB → eA+Be[A,B]/2 if [A, [A,B]] = 0 and [B, [B,A]] = 0,

eABe−A → B if [A,B] = 0,

eABe−A → B + [A,B] if [A, [A,B]] = 0,

eABe−A → ecB if [A,B] = cB and c is numeric,

eABe−A = cos(i
√
c)B +

[
sin(i

√
c)

]
/(i
√
c)[A,B], if [A, [A,B]] = cB and c is numeric.

(10)

while using the Mendaš-Milutinović relations [9] one has

eABe−A → Be−2A if {A,B} = 0,

eABe−A → Be−2A + {A,B}e−2A if {A, {A,B}} = 0.
(11)

In addition

eB → 1 +B if c = B2 = 0,

eB → cosh
√
c+B sinh

√
c/
√
c if c = B2 6= 0.

(12)

5

2.5. Occupation-number representation
For fermionic operators, SNEG allows working with the occupation-number representation (ONR) of the

states in a given Fock space. Second-quantized expressions can be applied to these states, one can compute
the matrix elements of operators between pairs of states, etc.

The single-particle Hilbert space is defined by a call to function makebasis, which takes as the argument
a list of all orbitals (without spin indexes, expansion over spin is performed automatically) that appear in
the problem, for example

makebasis[{c[1], c[2]}] →
{
c†1,↑, c

†
1,↓, c

†
2,↑, c

†
2,↓

}
. (13)

The resulting list of all creation operators is stored in a global variable BASIS. It is equally possible to define
BASIS directly, or to manipulate BASIS later on, for example to project out certain parts of the space. [The
basis from Eq. (13) will be used throughout this subsection for all examples.]

The states in the ONR are expressed in the form of Mathematica lists (“vectors”) with head vc, which
contain the occupancies of all orbitals represented by zeros and ones. For example,vc[0,1,0,1] corresponds
to a state with one particle with spin down in orbital 1, and one particle with spin down in orbital 2. In
interactive Mathematica notebooks, the ONR vectors are shown in the Dirac-ket-like format with boxes
which are either empty or filled, according to the occupancy of various orbitals:

vc[0, 1, 0, 1] → |¤¥¤¥〉 . (14)

If a vector is conjugated using conj, it behaves as the corresponding bra. If a bra and a ket are multiplied
by nc, the corresponding scalar product is computed.

The vacuum state is generated by a call to SNEG function vacuum. Alternatively, one may use the
nonspecific form, VACUUM, which corresponds to a generic state with no particles. By definition,

nc[conj[VACUUM], VACUUM] = 1. (15)

Function ap can be used to apply a second-quantization operator (or a full operator expression) to a
vector:

ap[1, VACUUM] → vc[0, 0, 0, 0],
ap[c[CR, 1, UP], vacuum[]] → vc[1, 0, 0, 0],

ap[c[CR, 1, UP], vc[0, 1, 0, 1]] → vc[1, 1, 0, 1],
ap[c[CR, 1, UP], vc[1, 0, 0, 0]] → 0.

(16)

It should be noted that

ap[nc[c[CR, 1, UP], c[CR, 1, DO]], VACUUM] → vc[1, 1, 0, 0],
ap[nc[c[CR, 1, DO], c[CR, 1, UP]], VACUUM] → −vc[1, 1, 0, 0], (17)

i.e., the fermionic sign is correctly evaluated. If one attempts to apply an operator which does not correspond
to one of the orbitals in the single-particle basis, the function call is returned unevaluated.

In addition, ap is automatically called when an ONR vector appears as the last element of a non-
commutative multiplication expression:

nc[c[CR, 1, UP], vc[0, 0, 0, 0]] → vc[1, 0, 0, 0]. (18)

It is possible to convert an ONR vector to the string of creation operators which, applied to the VACUUM
state, would give back the same vector:

vc2ops[vc[1, 1, 0, 0]] → −c†↓c†↑. (19)

6

2.6. Dirac’s bra-ket notation
SNEG provides support for calculations with the Dirac bra-ket notation, which can be intermixed with

the second-quantization expressions. This is convenient, for example, for mixed electron-phonon systems,
where the fermions can be described using the second-quantization language, but the oscillator using some
other convenient representation, such as coherent states. In mixed expressions, the bras and kets are by
default always commuted to the right of the fermionic operators. In interactive Mathematica sessions, the
bras and kets are displayed enclosed by appropriate angled brackets and bars.

A ket can be expressed using function ket, which can take one or several arguments (quantum numbers):

ket[m] → |m〉 ,
ket[m, n] → |m,n〉 . (20)

Quantum numbers may also remain unspecified; this is signaled by the value Null; in interactive sessions it
is displayed as a small centered circle:

ket[m, Null, n] → |m, ◦, n〉 . (21)

This functionality can be used to multiply kets from orthogonal Hilbert spaces, as in the following example:

nc[ket[m, Null], ket[Null, n]] → |m,n〉 . (22)

If the patterns of specified arguments are such that a conflict arises, as in nc[ket[m,Null], ket[n,Null]],
the expression is returned unevaluated.

All the preceding rules also apply to bras, defined using bra. With the Hermitian conjugation function
conj, a bra can be transformed into ket and vice versa. It should be noted that the order of quantum
numbers in the argument is maintained, rather than reversed:

conj[ket[m, n]] → 〈m,n| . (23)

When a bra and a ket are multiplied by nc, a scalar product is computed by comparing the quantum
numbers in equivalent positions using the Kronecker delta:

nc[bra[m, n], ket[i, j]] → δm,iδn,j , (24)

If necessary, this default behavior can be altered by redefining the function braketrule. Unspecified argu-
ments are ignored in evaluations of scalar products if they occur in equivalent positions in bra and ket, as
in

nc[bra[m, Null, n], ket[i, Null, j]] → δm,iδn,j , (25)

otherwise the scalar product remains unevaluated

nc[bra[m, Null], ket[i, j]] → 〈m, ◦|i, j〉. (26)

In the bra-ket notation, the operators may be expressed as products of kets and bras, for example:

nc[ket[1], bra[1]]− nc[ket[−1], bra[−1]] → |1〉 〈1| − |−1〉 〈−1| . (27)

It is possible to mix occupation-number-representation vectors and Dirac bra-ket vectors. The two
subspaces are assumed to be unrelated (i.e., tensor product space). SNEG embeds the Dirac kets inside
ONR vectors as the last element. When ap is used to apply an operator featuring both non-commuting
operators and Dirac ket-bras, the operators are applied to the ONR part of the vector, and the ket-bras to
the ket only.

7

2.6.1. Bra-ket notation for spin operators
SNEG includes functions for performing calculations with spin operators in the bra-ket notation. The

spin kets and bras for an arbitrary spin S are generated using functions spinket and spinbra:

spinket[3/2] → {|3/2〉 , |1/2〉 , |−1/2〉 , |−3/2〉} . (28)

If there is more than one Hilbert space, the position of the spin operator may be specified as the second
argument to spinket and spinbra by a position list with number one indicating the chosen position, and
zeros elsewhere:

spinket[1/2, {0, 1, 0}] → {|◦, 1/2, ◦〉 , |◦,−1/2, ◦〉} . (29)

Spin operators may be generated using functions spinketbra?, where the question mark stands for
X,Y,Z,P,M, i.e., X, Y, or Z component of spin, or the spin raising (Plus) or lowering (Minus) operator. The
first argument is the spin S, while the second is the optional position list. For example

spinketbraX[1/2] → 1
2
|−1/2〉 〈1/2|+ 1

2
|1/2〉 〈−1/2| ,

spinketbraY[1/2] → i

2
|−1/2〉 〈1/2| − i

2
|1/2〉 〈−1/2| ,

spinketbraZ[1/2] → 1
2
|1/2〉 〈1/2| − 1

2
|−1/2〉 〈−1/2| ,

spinketbraP[1/2] → |1/2〉 〈−1/2| ,
spinketbraM[1/2] → |−1/2〉 〈1/2| .

(30)

For completeness, there is also a function for generating the identity operator, spinketbraI.
The spin-spin coupling (exchange interaction) operator S1 · S2 can be generated using SNEG function

spinketbraspinspin. As an example, to generate the Hamiltonian for a two-site Heisenberg model in
external magnetic field, one could write

H = J spinketbraspinspin[{1/2, 1/2}]
+B(nc[spinketbraZ[1/2, {1, 0}], spinketbraI[1/2, {0, 1}]]
+ nc[spinketbraZ[1/2, {0, 1}], spinketbraI[1/2, {1, 0}]]).

(31)

2.6.2. Bra-ket notation for phonon operators
For convenience, SNEG also includes a small number of functions for calculations with oscillators

(phonons). Since oscillator states are unbounded, all functions take an argument which specifies the phonon
cutoff Nph. A set of states up to Nph is generated, for example, as

phononbasis[2] → {|0〉 , |1〉 , |2〉} . (32)

The phonon number, raising, lowering, and displacement operators are generated as follows:

phononnumber[2] → |1〉 〈1|+ 2 |2〉 〈2| ,
phononplus[2] → |1〉 〈0|+

√
2 |2〉 〈1| ,

phononminus[2] → |0〉 〈1|+
√

2 |1〉 〈2| ,
phononx[2] → |1〉 〈0|+ |0〉 〈1|+

√
2 (|2〉 〈1|+ |1〉 〈2|) .

(33)

2.7. Miscellaneous
There is some rudimentary support for calculating Berezin integrals over Grassman numbers: int[z]

stands for
∫

dz and one has, for example,

nc[int[z1]] = 0, nc[int[z1], z1] = 1, nc[int[z1, z2], z1, z2] = 1. (34)
8

3. Generation of expressions and operations on expressions

In this section I describe the higher-level SNEG functions for generating various operators which can be
expressed in terms of the second-quantization operators (occupancy, spin, on-site electron-electron repulsion,
exchange coupling, etc.) and for performing various operations upon the expressions (calculation of the
expectation values, Hermitian conjugation, etc.). In many of the application of SNEG, the library can be
used at this higher level and the user does not need to be concerned with the inner working of the library
at the lower levels.

3.1. Number (level occupancy) operator
The number (occupancy) operator n = c†c can be generated with the function number which comes in

different flavors depending on the function argument(s). The simplest case is the generation of the number
operator corresponding to an operator pair c†, c using

number[c] →
∑

σ

c†σ · cσ. (35)

Note that the appropriate product of creation and annihilation operators is returned and that a summation
of the spin degrees of freedom is performed. This behavior corresponds to fermionic operators declared to
be spin-1/2 operators (this is the default behavior for operators declared using snegfermionoperators; see
the documentiation of spinof for a way to redefine the spin of the operator). More generally, if additional
indexes are required, one may use

number[c[k]] →
∑

σ

c†k,σ · ck,σ. (36)

If a single spin component is required, it may be specified as the second argument:

number[c, UP] → c†↑ · c↑. (37)

For bosonic operators, there is no sum over spin components:

number[a] → a† · a. (38)

It is also possible to generate the number operator for more complex objects such as linear combinations
of levels. As an example, if the even (bonding) orbital is defined to be |e〉 = 1

2 (|1〉+ |2〉), the corresponding
occupancy operator may be generated using an abstract-function argument to number:

number[(c[#1, 1,#2] + c[#1, 2,#2])/Sqrt[2]&] → 1
2

∑
σ

(
c†1σc1σ + c†1σc2σ + c†2σc1σ + c†2σc2σ

)
. (39)

3.2. Hopping operator
The inter-site hopping operator may be generated using hop:

hop[c[1], c[2]] →
∑

σ

c†1,σc2,σ + c†2,σc1,σ. (40)

If a single spin component is required, it may be specified as the third argument:

hop[c[1], c[2], UP] → c†1,↑c2,↑ + c†2,↑c1,↑. (41)

Furthermore, there is a function spinfliphop which generates an operator that describes a process where
the electron’s spin is flipped as it hops between the sites, and a function hopphi, where a given phase change
is associated with hopping (as in the Peierls substitution for describing the effect of a magnetic field piercing
the plaquettes).

9

3.3. Hubbard’s local electron-electron repulsion operator
The electron-electron repulsion operator n↓n↑ may be generated using the SNEG function hubbard:

hubbard[c] → −c†↓c†↑c↓c↑. (42)

Notice that due to the automatic operator reordering in SNEG, the creation operator c†↑ is anticommuted
to the left of the annihilation operator c↓. There is also a closely associated function isozsq, defined as
(n−1)2 with n = n↑+n↓, i.e., the square of the isospin operator along the z-axis (see below for more details
on the isospin operators).

For operators with spin different from 1/2, the definition of hubbard is

hubbard[c] →
S∑

s1=−S

S∑
s2=s1+1

ns1ns2 , (43)

where S is the spin.
To describe inter-orbital and inter-site electron-electron charge repulsion, one can use function chargecharge:

chargecharge[d[m], d[n]] → nmnn, (44)

where ni is the occupancy operator of orbital annihilated by the operator di.

3.4. Spin operators
Spin operator for orbitals described by fermionic operators can be generated by SNEG functions snegx,

snegy, and snegz, which are defined for all values of particle spin (parameter spinof). For example:

spinx[c] → 1
2

(
c†↓c↑ + c†↑c↓

)
(45)

for a spin-1/2 operators (spinof[c] =̂ 1/2), and

spinx[d] →
√

3
2

(
d†−3/2d−1/2 + d†−1/2d−3/2 + d†1/2d3/2 + d†3/2d1/2

)
+ d†−1/2d1/2 + d†1/2d−1/2 (46)

for a spin-3/2 operators (spinof[d] =̂ 3/2). The spin raising and spin lowering operators can be generated
with spinplus and spinminus, respectively, while the total spin squared operator S2 can be obtained using
spinss. It is also possible to generate all three Cartesian spin operators at the same time using spinxyz.

The spin operator generation functions use low-level routines for the generation of spin matrices (spinmatrixX,
spinmatrixY, etc.) which are defined for any (half-)integer spin and may also be used to other purposes.

3.5. Exchange coupling operators
The exchange coupling (i.e., the scalar product of two spin operators, S1 · S2) can be generated using

spinspin:

spinspin[c[1], c[2]] → 1
4
(−c†1,↓c

†
2,↓ c1,↓c2,↓ + c†1,↓ c

†
2,↑c1,↓ c2,↑ − 2c†1,↓c

†
2,↑ c1,↑c2,↓ − 2c†1,↑ c

†
2,↓c1,↓ c2,↑

+ c†1,↑c
†
2,↓ c1,↑c2,↓ − c†1,↑ c

†
2,↑c1,↑c2,↑).

(47)

It is also possible to separately generate the transverse and the longitudinal parts (that is, xx+yy and zz
components, respectively) of the spin coupling, as well as the S−1 S

+
2 and S−1 S

+
2 terms:

spinspinxy[c[1], c[2]] → 1
2
(−c†1,↓c

†
2,↑c1,↑c2,↓ − c†1,↑ c

†
2,↓c1,↓c2,↑),

spinspinz[c[1], c[2]] → 1
4
(−c†1,↓c

†
2,↓ c1,↓c2,↓ + c†1,↓ c

†
2,↑c1,↓ c2,↑ + c†1,↑c

†
2,↓ c1,↑c2,↓ − c†1,↑ c

†
2,↑c1,↑c2,↑),

spinspinpm[c[1], c[2]] → −c†1,↑c
†
2,↓c1,↓ c2,↑,

spinspinmp[c[1], c[2]] → −c†1,↑c
†
2,↓c1,↓ c2,↑.

(48)

10

3.6. Nambu spinors and isospin operators
The Nambu spinor can be generated using nambu:

nambu[c[i]] →
(
c†i,↑
ci,↓

)

nambu[c[i], i] →
(

c†i,↑
(−1)ici,↓

) (49)

The parity of the optional second argument, which must be an integer, specifies the sign of the isospin-down
component of the Nambu spinor. The isospin operators may be generated as

isospinx[c] → 1
2
(c↓c↑ − c†↓c

†
↑),

isospiny[c] → 1
2
(ic†↓c

†
↑ + ic↓ c↑),

isospinz[c] → 1
2
(c†↓c↓ + c†↑ c↑ − 1),

isospinplus[c] → −c†↓c†↑,
isospinminus[c] → c↓c↑.

(50)

Like nambu, these five functions can take a sign-specifying second argument.

3.7. Vacuum expectation values
An important application area of SNEG is the computation of the vacuum expectation values (VEV) of

second-quantization-operator strings. Two main functions are provided for this purpose, vev and vevwick.
To speed up the evaluations, a number of simplification rules are defined in SNEG. For example, terms

with an odd number of operators in a string will always give zero when the VEV is calculated, thus such
terms are immediately dropped. Furthermore, the VEV of a normal ordered expression is zero by definition.
The terms where the right-most operator annihilates the vacuum (or the left-most operators annihilates the
vacuum when applied to the left, i.e. to the bra) are also discarded. For the “Fermi sea” ordering, a similar
rule is defined for the action of the two-operator occupancy expressions nk = c†kck and 1− nk = 1− c†kck to
the left and to the right, where the result depends on the value of the momentum index k. Finally, since
it assumed that the vacuum state for the “Fermi sea” ordering has a well defined number of particles and
magnetization, SNEG tests if the charge and spin quantum numbers are conserved; it not, such terms are
dropped when the VEV is computed. The user can also provide additionnal simplification rules if further
symmetries are known to be present in the problem being studied.

For the “empty band” ordering of fermionic operators, the VEV of an expression is trivially given by the
possible remaining purely numeric term after all the operators in the strings had been fully ordered, since
all other terms that involve some operators are (by the very definition of this ordering type) such that they
annihilate the vacuum to the right. This is, in fact, the rationale for using this ordering type by default in
SNEG.

For the “Fermi sea” ordering, the default rule for the VEV of bilinear forms is
〈
c†k,mck′,m′

〉
→ θ(−k)δk,k′δm,m′ ,

〈
ck,mc

†
k′,m′

〉
→ θ(k)δk,k′δm,m′ .

(51)

3.8. Other applications of Wick’s theorem
The function wick may be used to rewrite an expression in terms of normal ordered products and

contractions using Wick’s theorem [10]. Contraction are evaluated using contraction, which is defined as
AB = AB− : AB :, where double dots denote the normal ordering. The results depend, of course, on the

11

vacuum state, i.e., on the chosen ordering of the fermionic operators (see above). For “Fermi sea ordering”,
we have, for example:

wick[nc[c[CR, k], c[AN, k]]] →: c†kck : +θ(−k),
wick[nc[c[CR, k], c[CR, l], c[AN, m], c[AN, n]]] →: c†kc

†
l cmcn : − : c†l cn : δkmθ(−k)

+ : c†l cm : δknθ(−k)+ : c†kcn : δlmθ(−l)− c†kcm : δlnθ(−l) + δknδlmθ(−k)θ(−l)− δkmδlnθ(−k)θ(−l).
(52)

3.9. Conjugation
Hermitian conjugates of operator strings can be computed using the function conj. The numerical

constants and parameters are handled correctly depending on their nature (real or complex commuting
numbers, or Grassman anticommuting numbers). For complex fermionic and bosonic operator objects, the
first index is modified (creation to annihilation, and vice versa), while real fermionic operator objects are
left unchanged. Exponential functions is conjugated according to the rule

(
eA

)†
= eA† . (53)

SNEG also performs the simplification (
A†

)†
= A. (54)

This rule is usually valid, since a continuous linear operator defined on all of a Hilbert space has a unique
adjoint operator, however the rule does not hold for operators that are defined on a subset of a Hilbert space
and for unbounded operators. In the case of finite-dimensional Hilbert space, which are the main application
area of SNEG, there is no difference between adjoint operators and Hermitian conjugate operators, thus there
are no reasons for concern and the repeated conjugation may be automatically eliminated. These issues are
discussed in depth in Ref. [11].

3.10. (Anti)commutators
Commutators and anticommutators can be computed trivially by forming the sums or differences of

the products, or with the help of the provided auxiliary functions commutator and anticommutator. To
obtain the final results, it is often necessary to expand and recollect the common terms, for example by
using the Simplify function. Nested (anti)commutators can be computed using supercommutator and
superanticommutator; for efficiency, at each order of the iterative calculation the expression is simplified
to avoid redundant computations.

For example:

commutator[spinx[c], spiny[c]] → i
1
2

(
c†↑c↑ − c†↓c↓

)
,

supercommutator[spinx[c], spiny[c], 2] → 1
2

(
ic†↓c↑ − ic†↑c↓

)
.

(55)

3.11. Normal ordering
Expressions can be “normal ordered” by subtracting their vacuum expectation values. Two functions

are provided for this purpose: normalorder and normalorderwick. As indicated by the name, they differ
in how the vacuum expectation value is computed (function vev or vevwick, see above). For convenience,
SNEG also allows to mark expressions as “normal ordered” without actually performing the evaluation. The
conventional double dot notation is used for this purpose; to surround a (sub)expression with double dots,
dd has to be applied to the string:

dd[nc[c[CR], c[AN]]] →: c†c : . (56)

12

3.12. Operations with states
As discussed previously, the states can be represented in SNEG either as strings of second-quantization

operators (implicitly applied to a vacuum state in which no particles are present) or as occupation-number-
representation vectors. To compute a matrix element of an operator between two states, 〈a|O |b〉 one can
use SNEG functions braketop or braketvc, depending on the representation used. To compute diagonal
matrix elements (i.e., the expectation values), one can also use functions expvop and expvvc. For example,
the expression

expvop[spinss[c], c[CR, UP]] → 3/4 (57)

calculates the expectation value of the spin squared operator S2 in the doublet state c†↑ |0〉, i.e., S(S + 1) =
3/4. Finally, there are two “norm” functions that compute

√
〈ψ|ψ〉, normop and normvc; these are useful

to generate (ortho)normalized sets of states.
The braket calculations can be generalized to lists of states to generate matrix representations of opera-

tors; the corresponding functions are named matrixrepresentationvc and matrixrepresentationop.
A state may be decomposed into components with respect to a given basis (list of states) using decomposevc

and decomposeop. Furthermore, a list of states may be orthogonalized using orthogvc and orthogop.

3.13. Projection operators
A number of projection operators can be generated by SNEG:

projector0[c] → (1− n↑)(1− n↓),
projectorUP[c] → n↑(1− n↓),
projectorDO[c] → n↓(1− n↑),
projector2[c] → n↑n↓,

projector1[c] → n↑(1− n↓) + n↓(1− n↑),
projector02[c] → (1− n↑)(1− n↓) + n↑n↓.

(58)

In calculations involving projection operators, it is often useful to simplify expression by dropping terms
which would yield zero when applied to a vacuum state; the SNEG function to achieve this is called
zeroonvac. For example:

nc[projector1[c], c[CR, UP]] → c†↑ + c†↓c
†
↑c↓,

zeroonvac[nc[projector1[c], c[CR, UP]]] → c†↑.
(59)

3.14. Simplification of expressions
Previously in this section I have described a number of function for generating operators in the form

of strings of second-quantization operators. Often it is necessary to proceed in the opposite direction:
given a long complex expression, one has to rewrite it in terms of higher-level functions, such as number,
hopping, repulsion, or spin operators. This might be used, for example, after performing a change-of-basis
transformation on the creation and annihilation operators, if one requires a physical interpretation of the
resulting expression.

There is, clearly, no unique mapping from an expression to the corresponding generation functions.
Therefore, there are several specialized routines which apply heuristic rules in an attempt to rewrite the ex-
pression: SnegSimplifyNumber identifies parts of the expression which may be rewritten in terms of number,
SnegSimplifyHubbard does the same for hubbard and SnegSimplifyHop for hop, while SnegSimplifySpin
will find instances of spinx, spiny, spinz and some of their products (including spinspin expressions).
The whole set of the rules can also be applied by SnegSimplify and SnegFullSimplify, although experi-
ence shows that such brute-force approach is not very efficient and that a guided consecutive application of
suitably chosen specialized routines gives better results.

13

3.15. Miscellaneous
Operators can be raised to the n-th power using the function pow, for example

pow[number[a], 3] → a†a+ 3(a†)2a2 + (a†)3a3, (60)

for a bosonic operator a. There is an additional function, fastpow, which performs a simplification of the
intermediate expression at each step of the iterative calculation.

Series expansions of functions with operator arguments can be performed using snegSeries. For exam-
ple,

snegSeries[Exp, nc[c[CR], c[AN]], 10] → 1 +
6235301
3628800

c†↑c, (61)

which is a good approximation to ec†c = 1 + (e− 1)c†c.
For convenience, the inner and outer products of vectors of operator expressions can be calculated using

the SNEG functions inner and outer, which are the analogues of the Mathematica functions Inner and
Outer with nc playing the role of multiplication. For example, the function spinspin (see above) for
calculating S1 · S2 is implemented as inner[spinxyz[c[1]],spinxyz[c[2]]]. Furthermore, function VMV
can be used to calculate the vector-matrix-vector products using the nc multiplication. This function is
very useful for generating operator expressions and it is frequently used internally in the package SNEG.
Finally, the cross product between two vectors using the nc multiplication can be calculated using mcross.
For example, S1 × S2 can be generated using mcross[spinxyz[c[1]], spinxyz[c[2]]].

Function SimplifyKD can be used to simplify expressions involving Kronecker delta function (KroneckerDelta)
and the unit step function (UnitStep). The following rules are implemented:

θ(k) + θ(−k) → 1,
1− θ(−k) → θ(k),
θ(k)θ(−k) → 0,

δk,lθ(k)θ(−l) → 0,
(δi,j)n → δi,j , n ∈ N ,
θ(k)n → θ(k), n ∈ N .

(62)

(See below for simplification of symbolic sum expressions featuring Kronecker deltas and unit steps.)

4. Generation of sets of basis states

One of the principal application areas of SNEG is the transformation of the operators expressed in the
second-quantized notation into the corresponding matrix representation in a given Hilbert space. To simplify
numerics, it is often important to take into account various symmetries of the problem, i.e., to determine
the Hamiltonian matrices in the different invariant Hilbert subspaces. SNEG provides a number of functions
for generating the basis-state sets with chosen well-defined quantum numbers (charge conservation, etc.). In
this section we describe both the low-level functions for basis-set manipulation, as well as the higher-level
routines which provide “canned solution” for a number of different symmetry-adapted basis sets. These are
convenvient for calculations defined on finite clusters, such as small Hubbard chains.

4.1. Full Fock space basis set representation
The basis-state set that spans the full Fock space is represented in SNEG as a list of pairs – the first

member of each pair is a list of quantum numbers which fully characterizes the invariant subspace, while
the second member of the pair is a list of all the basis states in the given subspace. The basis states can
be specified either as operator expressions (which are to be applied on the vacuum state) or as occupation-
number-representation (ONR) vectors. An example of a basis with well-defined charge and spin for a
single-orbital problem is

{
{{−1, 0} , {1}} ,

{
{0, 1/2} ,

{
c†↑

}}
,

{
{1, 0} ,

{
c†↓c

†
↑
}} }

. (63)
14

Table 1: Basis-set-generation functions in SNEG. Q stands for the total occupancy (charge) quantum number, Sz is the
projection of total spin along the z-axis, while S is the total spin quantum number. Function spinlessbasis generates states
for a problem without spin, while all other functions pertain to spin-1/2 problems.

Function Conserved quantum numbers
nonebasis −
qbasis Q
szbasis Sz

sbasis S
qszbasis Q,Sz

qsbasis Q,S
spinlessbasis Q

The first quantum number is the charge (with respect to half filling), while the second is the spin. If the
states in a subspace have multiplicity higher than 1, only a single representative state appears for each
multiplet. In the last example, the spin doublet is represented, e.g., by c†↑.

It is possible to transform from the creation-operator representation to the occupation-number repre-
sentation and back using functions bzop2bzvc and bzvc2bzop. These functions can be used to perform the
manipulations of basis states in the representation where the implementation is easier and/or the calculation
is faster.

There is a number of functions for manipulating the sets of states: basistensorproduct combines two
basis sets by generatic all possible combinations (i.e., a tensor product basis), transformbasis applies a
given rule (a transformation) to each state, mergebasis can be used to collect states in subspaces with
equivalent quantum numbers, and dropemptysubspaces truncates subspaces containing no states (which
may arise from projecting out states according to some chosen rule).

4.2. High-level basis generation functions
SNEG functions for generation of basis sets are tabulated in Table 1. These functions generate basis sets

in the creation-operator representation. There are also corresponding functions which generate basis sets in
the occupation-number representation; their names are suffixed by vc.

From the basis sets for the cases with conserved charge (Q) quantum number, one can generate basis
sets with conserved isospin quantum number I using transformQStoIS.

In addition, there is support for generating basis states for calculations with spin objects in the bra-ket
notation. The relevant SNEG function is named spinbasis.

4.3. Generation of operator matrices
Once the desired basis sets have been generated, the operators in the second-quantization language can

be transformed into the corresponding matrix representations using the functions makematricesbzop and
makematricesbzvc. It should be remarked that the latter function is typically much faster and, in fact,
it is often advantageous to transform the basis set from the creation-operator to the occupation-number
representation in order to use it. These functions generate matrices only within the invariant subspaces, i.e.,
it is assumed that the operator in question commutes with the Hamiltonian. There are also more general
functions, makeallmatricesbzop and makeallmatricesbzvc, which generate matrices between all paris of
invariant subspaces.

5. Symbolic sums

SNEG allows calculations with symbolic sums over dummy indexes, which remain in their unevaluated
forms. They are defined using the function sum taking two arguments: the first one is the expression that

15

is being summed over, while the second one is the list of all summation indexes. For example

sum[c[CR, k], {k}] →
∑

k

c†k,

sum[nc[c[CR, k, sigma], c[AN, k, sigma]], {k, sigma}] →
∑

k,σ

c†k,σck,σ.
(64)

The list of indexes is automatically sorted; this allows some automatic simplifications. Numeric quantities
which do not depend on any of the summation indexes are factored out of the sum expression. While not
strictly necessary, it is good practice to declare the symbols which will be used as summation indexes using
snegfreeindexes.

A comment is in order about the design choice to introduce a new symbolic sum function sum instead
of using the Mathematica built-in Sum, which can also be used to define indefinite sums as Sum[f,i]. The
reason is that Mathematica Sum attempts to evaluate indefinite summations where it can, while sum is
merely a notation for symbolic sums which remain unevaluated at all times. This is especially important in
situations where the operator expression can be simplified to a constant value x. While Sum[x,k,sigma]
evaluates to xkσ, which is meaningless, sum[x,{k,sigma}] evaluates to x

∑
k,σ 1, which can be be naturally

interpreted as the number of states, including the spin degeneracy, multipled by a constant x.

5.1. Operations on symbolic sums
Products of sums can be calculated using nc. SNEG automatically handles summation index collisions

and renames the duplicated indexes by appending a number to the name symbol (and automatically declaring
the new name using snegfreeindexes). It is thus perfectly safe to use the same dummy index in different
expressions:

nc[sum[number[c[k], UP], {k}], sum[number[c[k], DO], {k}]] → −sum[c†k,↑c
†
k1,↓ck,↑ck1,↓, {k, k1}]. (65)

When commutators of sums are computed, the name replacement is always performed on the same sum in
order to maximize the opportunities for automatic cancellation of equal terms.

Conjugation (conj) and VEV operation (vev and vevwick) can be applied to a symbolic sum:

vevwick[expr] → sum[θ(−k)θ(−k1), {k, k1}], (66)

where expr is the expression in Eq. (65).

5.2. Manipulation of symbolic sum expressions
There is a number of SNEG functions for symbolic manipulation of sum expressions. Lists of expressions

in the first argument can be “threaded” over using sumThread:

sumThread[sum[c[CR, k, UP], c[CR, k, DO], {k}]] →
{∑

k

c†k↑,
∑

k

c†k↓

}
. (67)

Explicit sums in the first argument can be expanded using sumExpand:

sumExpand[sum[a + b, {k}]] →
∑

k

a+
∑

k

b, (68)

and expression with (partially) overlapping index lists can be collected using sumCollect:

sumCollect[2sum[a, {k}] + 3sum[b, {k}]] →
∑

k

2a+ 3b,

sumCollect[2sum[a, {k, m}] + 3sum[b, {k, n}]] →
∑

k

(∑
m

2a+
∑

n

3b

)
.

(69)

16

It should be also noted that sumCollect puts possible leading or trailing operators inside the summation
argument:

sumCollect[nc[a, sum[b, {k}], c]] →
∑

k

a · b · c. (70)

For convenience, a set of rules for simplifying expressions featuring Kronecker delta δn1,n2 are defined as
rulesumSimplifyKD; they can be applied using sumSimplifyKD. They handle situations where the Kronecker
delta picks out elements from the sum:

sumSimplifyKD[sum[KroneckerDelta[sigma, UP]c[CR, sigma], {sigma}]] → c†↑, (71)

and work even for more complex expressions. Furthermore, products and sums over non-overlapping index
sets are automatically factored/distributed out, for example:

sumSimplifyKD[sum[a[k] b[l], {k, l}]] →
∑

k

a[k]
∑

l

b[l], (72)

where a is assumed to depend only on k, and b only on l.
Finally, expressions with symbolic sums can be automatically simplified using sumSimplify which uses

Mathematica function Simplify with additional transformation functions for expanding, simplifying, and
collecting the terms.

6. Applications

SNEG has found many applications in the field of theoretical condensed matter physics. It has been
applied to perform exact diagonalizations on Hubbard clusters, small Heisenberg chains and similar lattice
models, calculation of commutators of complex operator expressions (to establish the presence of various
symmetries, in the equation of motion method, etc.), and perturbation theory to higher orders. It is best
suited for problems where the complexity is too high for paper and pencil calculations, yet still sufficiently
low for a brute-force computer algebra approach (which SNEG essentially is). The package makes other-
wise tedious calculations a routine operation. Most importantly, it prevents inauspicious sign errors which
commonly arrise when fermionic operators are (anti)commuted. For this reason, the package is also suitable
for educational purposes, i.e., as a way of verifying the correctness of elementary calculations with operator
quantities.

The main major application of SNEG in its role of an “interface” between the user and the low-level
numerical codes is the package “NRG Ljubljana” for performing the numerical renormalization group (NRG)
calculations for quantum impurity models [12, 13, 14]. Using SNEG as the underlying library, both the
model (Hamiltonian) and the observables (operators) may be defined in terms of high-level expressions.
This enabled a clear separation between the problem domain (coded in Mathematica and SNEG) and the
solution domain (coded in C++). This is advantageous not only for reasons of performance, but especially
for maintainability of the code. During the lifetime of the project, no major rewrites or design changes were
necessary in either part of the code and the development could proceed incrementally without breaking the
existing features. Furthermore, adapting the package to different problems and symmetries, or to calculate
new quantities, is rather trivial.

7. Conclusion

The natural language of many-particle physics is the quantum field theory, more particularly the for-
malism of the second quantization. I have argued that the computational many-body physics should strive
towards creating computer codes which would allow defining problems – whenever possible – in their natu-
ral problem-domain language. It is hoped that the approach (and the specific implementation, SNEG) will
improve the productivity of users and the quality of scientific software (in particular reliability, reusability,
maintainability, and correctness).

17

References

[1] Werner M. Seiler. Supercalc - a reduce package for commutator calculations. Comput. Phys. Commun., 66:363, 1991.
[2] Georg Lang. ccr car algebra. http://library.wolfram.com/infocenter/TechNotes/4269/, 2002.
[3] Nam-Anh Nguyen and T. T. Nguyen-Dang. Symbolic calculations of unitary transformations in quantum dynamics.

Comput. Phys. Commun., 115:183, 1998.
[4] M. Headrick. grassmann.m. http://people.brandeis.edu/ headrick/physics/grassmann.m, 2009.
[5] J. Michelson. grassmannops.m : A mathematica package for grassmann and other non-commuting numbers and operators.

http://www.physics.ohio-state.edu/ jeremy/mathematica/grassmannOps/, 2007.
[6] So Hirata. Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction,

coupled-cluster, and many-body perturbation theories. J. Phys. Chem. A, 107:9887, 2003.
[7] So Hirata. Symbolic algebra in quantum chemistry. Theor. Chem. Acc., 116:2, 2006.
[8] T. Hahn and M. Pérez-Victoria. Automated one-loop calculations in four and d dimensions. Comput. Phys. Commun.,

118:153, 1999.
[9] I. Mendaš and P. Milutinović. Anticommutator analogue of the baker-hausdorff lemma. J. Phys. A: Math. Gen., 22:L687,

1989.
[10] G. C. Wick. The evaluation of the collision matrix. Phys. Rev., 80:268, 1950.
[11] Francois Gieres. Mathematical surprises and dirac’s formalism in quantum mechanics. quant-ph/990069, 1999.
[12] K. G. Wilson. The renormalization group: Critical phenomena and the kondo problem. Rev. Mod. Phys., 47:773, 1975.
[13] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson. Renormalization-group approach to the anderson model of dilute

magnetic alloys. i. static properties for the symmetric case. Phys. Rev. B, 21:1003, 1980.
[14] Ralf Bulla, Theo Costi, and Thomas Pruschke. The numerical renormalization group method for quantum impurity

systems. Rev. Mod. Phys., 80:395, 2008.

18

