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Supplementary Fig. 1. Charge redistribution in the quantum dot and in the superconducting island. Calculated occupation expectation
values versus gate-induced charge in the QD, ν, for a Ec = 0 and V = 0 (other parameters are the same as those in Table 1) and b device
parameters in Table 1, and corresponding QD and SI filling schematics for specific ν values. The calculation is done for N = 800 and
n0 = 800. The occupation expectation values are those of the QD, ⟨nN⟩, and of the SI, δ⟨nS⟩, where δ indicates that the number shown is
the variation in occupation over 800 electrons. The values shown correspond to the GS and the first addition and removal excitations. The
addition and removal expectation values overlap in (a), but do not do so in (b), leading in the latter case to the double-S shape of the SCE. In
the QD and SI charge filling schematics, black (white) arrows represent electron (hole) spins. These schematics show that, whereas at ν = 1
both (a) and (b) are Yu-Shiba-Rusinov (YSR)-like with electron-hole symmetric excitation expectation values (with double-headed arrows in
(b) reflecting the fractional expectation values for the QD and SI occupations), away from ν = 1 (e.g., right after the charge fluctuation point
at ν = 1.55) there is a strong asymmetry in addition and removal occupation values in (b) not present in (a). The asymmetry comes from
having only one level in the QD which can be filled with up to 2 electrons. As a consequence, in the nGS +1 state an additional electron must
go into the SI. In contrast, in the nGS − 1 state an electron can be removed from the SI or from the QD. In general, the charge excitations are
electron-hole asymmetric (Coulombic-like) for ν ̸= 1.
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Supplementary Note 1. Parameter extraction methods

Here we detail the methods which we used to extract the
QD-SI device parameters shown in Table 1 of the main text.
Similar methods as those outlined here and at the end of Sup-
plementary Note 2 were used to extract the parameters of the
SI-QD-SI device.

U is obtained from Coulomb diamonds spectroscopy for a
fixed VS such that the SI is placed in deep Coulomb blockade
and only acts as a cotunneling probe of the QD (see Supple-
mentary Fig. 2a). The measurement is performed at finite B
to partially suppress superconductivity. From the length of
the vertical arrow, which goes from zero bias up to the apex
of the central 1,0 Coulomb diamond and which is equal to
U/2 for asymmetric source and drain tunnel barriers, we ex-
tract U = 0.8 − 1.0 meV. From the ratio of U/2 to the VN

extension of the diamond, we find the lever-arm parameter of
VN, αN = 0.26 mV/mV.

Ec is also estimated from Coulomb diamonds spectroscopy
(shown in Supplementary Fig. 2b). VN is fixed such that the
QD is placed in deep Coulomb blockade acting as a cotunnel-
ing probe of the SI. Black lines show the prolongation of the
equidistant (in VS) conductance lines at high bias (Vsd outside
of ≈ ±0.4 mV) coming from higher excitations towards zero
bias such as to form a Coulomb diamond [1]. The zero-bias
crossings of this diamond correspond to nGS = nGS + 1 and
nGS + 2 = nGS + 3, and are therefore spaced by 2e. Thus,
the height of the diamond is approximately 2Ec (given by the
vertical arrow), from which we find Ec ≈ 0.19 meV. This ap-
proximation ceases to be valid when Ec is significantly larger
than ∆. From the ratio of Ec to the VS extension of the di-
amond, we find the lever-arm parameter of VS, αS = 0.32
mV/mV.

The measurements of Γ and V are based on the curvature
and spacing of the GS transition lines in the stability diagram,
inspired by similar measurements in double QDs in the nor-
mal state [2]. This extraction is performed in the portion of the
stability diagram magnified around the triple (TP) and quintu-
ple (FP) points shown in Supplementary Fig. 2c. At the TP,
the charge states 1,0, 1,1 and 2,0 are degenerate, while at the
FP the states 1,1, 1,2, 2,2, 2,1 and 2,0 are degenerate, as cor-
roborated from their Zeeman splitting.

To measure Γ, we first prolong with dashed lines the ap-
proximately horizontal and vertical conductance lines in the
diagram of Supplementary Fig. 2c. Γ is then given by the
length of the blue bars, which is the distance between the in-
tersection of the curved conductance lines with the line join-
ing the TP and FP, and the intersection of the dashed lines. We
convert this length which is in units of gate voltage to energy
by using αN and αS. We find Γ ≈ 0.05 meV.

Second, we assume that the system behaves approximately
as a double QD in the normal state in the two-electron charge
sector and we equate the length of the red line to 2Γ +

√
2V .

Using αN and αS, we find V = 0.13 meV.
By using our model to interpret the spectral data in Fig. 3b

of the main text we obtain ∆ = 0.2 meV, which is slightly
smaller than ∆ = 0.270 meV of the parent Al superconductor
in devices fabricated out of the same batch of nanowires [3–5],
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Supplementary Fig. 2. Extraction of QD and SI parameters from
experimental data. The stability diagram from Fig. 3a is copied on
the bottom left panel to illustrate with arrows and boxes the gate-
sweep directions/ranges of the data in (a-c). a G versus Vsd at
B = 0.35 T taken with VN swept in the direction of the horizon-
tal blue arrow in the stability diagram. b G versus Vsd at B = 0
taken with VS swept in the direction of the vertical red arrow in the
stability diagram. c Zoomed region inside the green box of the sta-
bility diagram. The meaning of the lines drawn on top of the plots is
explained in the text.

and which may be attributed to weaker hybridisation between
the InAs nanowire and the Al superconductor [6], as we re-
ported before [4].

The set of values is in reasonable agreement with the model
parameters in Table 1 of the main text which produce the best
fit to the stability diagrams and the spectra in Fig. 3 and Sup-
plementary Fig. 4.

The effective g-factors in Table 2 of the main text are ob-
tained from the B dependence of the stability diagram shown
in Fig. 3a of the main text. To extract gS we subtract the VS

extension of the 2,1 charge domain at B = 0.3 T and B = 0.
Then, using αS to convert that splitting to Zeeman energy,
EZS, we find |gS| = EZS/µBB = 6.9. Through a similar
procedure, using instead the VN extension of the 1,0 charge
domain and αN, we find |gN| = EZN/µBB = 2.9.
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Supplementary Fig. 3. Charge parabolas at finite B and exchange interaction. (a,b) Calculated charge parabolas versus δn0 at ν = 1 for
Zeeman energies of the QD and the SI indicated in each panel, where δn0 corresponds to the gate-induced charge in the superconductor, n0,
shifted by N = 200. Each parabola is tagged by its Sz number. A red bar in (a) indicates the singlet-triplet exchange splitting. Black bars in
(b) indicate doublet and triplet Zeeman splittings. The Sz = 0 triplet state is not included in the calculation. The sketches on the right show
spin states color-coded as the states shown in (b) for δn0 = 1.
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Supplementary Fig. 4. Changes in the VS dependence of superconducting Coulombic states across a nN = 2 → 1 transition. (a-e)
Colormaps of G versus source-drain bias, Vsd, and SI gate voltage, VS, at various settings of the QD gate voltage, VN, indicated by (a) red, (b)
green, (c) purple, (d) yellow and (e) cyan vertical arrows in the stability diagram on the left, which is a duplicate of Fig. 3a in the main text.
The tails of the black arrows are attached to a subgap state, while their heads point to the direction of the evolution of said state with varying
VN. The color scale is saturated to highlight subgap excitations. Charge numbers of the QD and the SI, nN and nS, are indicated in (a) and (e).
An unwanted gate glitch is indicated by an asterisk in (b). Calculated SCE spectra using the same model parameters as in Fig. 3a in the main
text are overlaid as blue dots on each panel for comparison. In the calculation, ν is fixed to the values indicated on top of each plot, and n0 is
swept. The calculation matches the position of positive-slope SCE, but does not account for negative-slope features, negative G features, and
continuum features.
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Supplementary Note 2. Other Γ regimes in the QD-SI device

In this Supplementary Note, we show additional data from
the QD-SI device for smaller and larger Γ values than the in-
termediate Γ case in the main text. Device parameters in these
other regimes are provided in Supplementary Table 1. We
classify these regimes according to the following experimen-
tal considerations, which have the advantage of being model
independent:

1. Weak Γ. The curvature of the G lines in the stabil-
ity diagram is below the width of these lines. Multi-
degeneracy points (e.g., TPs) are visible.

2. Intermediate Γ. The curvature of the G lines in the
stability diagram is resolvable. Multi-degeneracy points
are still visible.

3. Strong Γ. GS transitions due to charge addition in the
QD cannot longer be distinguished. Multi-degeneracy
points are no longer defined.

Supplementary Table 1. Parameters of the QD-SI device and
model for strong and weak Γ. For each Γ strength, the top-row
parameters are estimates obtained from measurements, while the
bottom-row ones are obtained from best fits of the model output to
the experimental data based on the measured parameters as the ini-
tial input for subsequent fine tuning. Extraction methods are shown
at the end of Supplementary Note 2.

Γ strength Γ (meV) U (meV) Ec (meV) ∆ (meV) V (meV)

Strong - 1.2 0.39 ≤ 0.27 -
0.4 0.8 0.4 0.2 0.16

Weak ≈ 0 0.9 0.21 ≤ 0.27 0.24
0.004 0.8 0.26 0.2 0.24

Weak Γ regime and indications of elastic cotunnelling

A hint of a cotunnelling transport mechanism is provided
by observations of current blockade in the weak Γ regime. In
sufficiently weakly coupled double QDs, a finite bias voltage
leads to the formation of triangles in the current stability dia-
gram, which arise as the two QD levels are detuned from each
other within the bias window [2, 7]. Similarly, in the limit of
weak Γ (Supplementary Table 1) in the QD-SI system current
triangles appear at finite bias due to the gate-dependent energy
difference between the GS and the discrete and continuum ex-
citations probed in transport. Here, we report the observation
of a bias-polarity dependent disappearance of the current tri-
angles in the finite-bias stability diagram. The importance of
this finding is that it hints at elastic cotunneling as a possible
transport mechanism in our device and thus, at coherence over
the full device.

Our model reproduces well the gate positions of conduc-
tance lines in the stability diagram, as shown in Supplemen-
tary Fig. 5b. For full agreement, the theory diagram needs
to be rotated by 3.4 degrees to account for a small capacitive

cross-talk between VN and VS. This was not needed for plots
in the intermediate-Γ regime as a fine tuning of Γ could be
done to compensate for this rotation. To reproduce the pres-
ence of a quadruple point (QP) in the experimental stability
diagram we set Ec ≈ V , which is consistent with the experi-
mental values of these parameters.

Three current triangles are in principle expected to emerge
at finite bias out of the two TPs (solid circles) and the QP
(open circle) observed at zero-bias at the convergence of the
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Supplementary Fig. 5. Parity-dependent current blockade in the
weak coupling regime in the QD-SI device. a Zero-bias G stability
diagram in the weak Γ regime. b GS crossings (represented as red
lines) calculated for N = 200. The graph is a collage of three identi-
cal plots with n0 ranging from 199 to 201, which are stitched copies
of the plot highlighted by the rectangle with thick borders. c,e Cur-
rent, I , stability diagrams measured at two opposite bias polarities,
indicated in each plot. Gate settings for (a,c,e): VG1 = −350 mV,
VG3 = −52 mV, and VG5 = −100 mV. Note the +69 mV change
in VG5 with respect to Fig. 3a of the main text. An asterisk in (c)
indicates an unwanted gate glitch. d,f Calculated stability diagrams
depicting excitations within the (e) negative and (f) positive ranges
of E/∆ indicated in each plot, to be contrasted with experimental
diagrams in (c) and (e). See text for details. Parameters of the ex-
perimental diagrams and calculations are indicated in Supplementary
Table 1. g Sketch of the odd→even transition in the occupation of
the SI, nS, absent in the data in (c,e) for any parity of the occupation
of the QD, nN. The suppression of this transition leads to missing
current bands and missing current triangles.
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the gate ranges from which the magnifications in Supplementary Figs. 5a,c,e were extracted. Black arrows in (b) point to examples of current
triangles which nearly disappear when the polarity of the bias is reversed in (c) (pointed then by red arrows), and vice versa.

six charge states indicated in red in Supplementary Fig. 5a [2].
However, as seen in the finite-bias current (I) diagrams in
Supplementary Figs. 5c,e, one of the three triangles is always
gone; i.e., only two triangles are visible per trio of two TPs
and one QP. Occasionally, the base of the missing triangles re-
mains. To guide the reader through the observed phenomena,
we draw lines on top of the data in Supplementary Figs. 5a,c,e.
At Vsd = 0, in Supplementary Fig. 5a, we indicate the GS
boundaries as continuous lines, intersecting at two TPs flank-
ing a QP. In Supplementary Figs. 5c,e, we use continuous lines
of the same slope as the zero-bias GS boundaries to identify
the two visible triangles, and thick dashed lines to identify the
absent triangle.

As shown in the extended diagrams in Supplementary
Fig. 6, this observation is robust over several pairs of triangles,
provided that Γ is weak. Intermediate Γ results in washed-
out current triangles and the bias-polarity dependent current
blockade is not as clearly seen; this occurs in the sections of
the stability diagram within the boxes of solid contour. The
presence of larger Γ here is deduced from the finite curvature
of the conductance lines in the zero-bias stability diagram in
Supplementary Fig. 6a.

The origin of the missing triangles resides in a blocked
transition. In Supplementary Figs. 5d,f, we plot calculated
stability diagrams in which the blue bands depict all possi-
ble excitations within the given energy range, to be compared
with the experimental diagrams in Supplementary Figs. 5c,e.
As positive (negative) bias corresponds to transport by emp-
tying (filling) the QD-SI, negative (positive) ranges of ener-
gies are used. At Vsd = ±0.15 mV, the bias window covers
≈ ∓0.75∆/e. It is apparent from the comparison that I ≈ 0
for transitions within red boxes in the calculated diagrams.
We give an example of this observation in the 2,1→2,2 transi-
tion, indicated in Supplementary Figs. 5c,e by green and red
arrows, respectively. At positive bias, the 2,2→2,1 discrete
transition is probed together with even→odd transitions in-
volving excitations to the SI continuum. In this case, a band

of current is observed in Supplementary Fig. 5c. However,
at negative bias, the 2,1→2,2 and odd→even transitions are
instead probed. The expected current band is absent in Sup-
plementary Fig. 5e. Transitions which change the parity of
the QD but keep the parity of the SI constant are instead al-
lowed; e.g., the 1,0-2,0 transition produces a current band at
both positive and negative bias. Due to this, the current is not
exactly zero inside the missing current triangles.

In general, current bands are absent in Supplementary
Figs. 5c,e whenever the GS corresponds to a state with odd
occupation on the SI, and the respective discrete or continuum
excitations involve a parity change of the SI from odd to even
(Supplementary Fig. 5g). In the absence of a QD, a single
transport path for elastic cotunneling is available in the odd-
to-even parity transition of the SI, as opposed to the multiple
paths available in the even-to-odd transition, which leads to a
parity-dependent current suppression, as detailed in Ref. [8].
To corroborate whether this also holds for the QD-SI system,
future modelling of the current is required.

Strong Γ regime

For large Γ, only parity alternation of the SI is observed,
as shown in the stability diagram of Supplementary Fig. 7a,
with line wiggling being the only indication of the presence of
the QD. Tuning of VG3 in order to decrease Γ unmistakably
demonstrates the presence of the QD in this regime, as shown
in Supplementary Fig. 8. Supplementary Fig. 7b shows the
output of our model for the GS boundaries of the stability di-
agram. The calculated diagram matches well the conductance
lines in the experiment.

In Supplementary Fig. 7c, we show the measured SCE
spectrum. The subgap excitations show discontinuities (in-
dicated by arrows) when a new charge is removed from the
QD-SI, as evidenced by the alignment of the discontinuities
to the edge of the Coulomb diamonds corresponding to the
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SI continuum at Vsd ≈ 0.4 mV. To highlight this alignment,
a vertical dashed line has been added at VS = 13.2 mV. At
the discontinuities, the subgap excitations jump by ≈ 0.1 mV.
This is a rather ubiquituous phenomenon, also present in sim-
ilar measurements at different VN.

A calculation of the spectrum for ν = 0 is overlaid on top of
the experimental data in Supplementary Fig. 7c, after mirror-
ing it with respect to to E = 0. It is found to match reasonably
well the gate positions of the discrete subgap excitations; how-
ever, it fails to reproduce the observed discontinuities. As the
model is not a transport model and does not account for the
continuum, it also does not reproduce negative dI/dVsd nor
most of the features above |Vsd| ≈ 0.3 mV. Due to the rela-
tion of the discontinuities with the removal of a particle from
the QD-SI, the observed discontinuities are possibly related
to transport through the system (for example, to the effect of
V on transport through the SI continuum), which highlights
once more the need of more complex modelling.

Parameter extraction methods for weak and strong coupling

To obtain the QD-SI device parameters shown in Supple-
mentary Table 1, we assume that the lever-arm parameters of
the gates found in the intermediate Γ regime remain the same
in these slightly different gate settings. In both regimes, we
find Ec by measuring the distance in gate voltage VS between
the first and third topmost peaks in the stability diagrams of
Supplementary Fig. 5a and Supplementary Fig. 6a. We then
convert the gate voltage distance, which is equal to 2Ec/αS,
to energy.

In the strong Γ regime, determinations of U , Γ and V
are difficult due to the nearly single-dot character of the sta-
bility diagram. To estimate U , we tune the device quasi-
continuously into a less hybridized regime, as shown in in
Supplementary Fig. 8. U corresponds to the green horizontal
bar in Supplementary Fig. 8c, converted to energy by using
αN.

In the weak Γ regime, U is measured as the horizontal
VN distance between the midpoints of the vertical conduc-
tance lines delimiting the 0,1 charge sector in Supplementary
Fig. 6a. The measured distance, 2U/αN, is then converted to
energy. To determine Γ and V , we employ on the stability
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diagram of Supplementary Fig. 6a the same method as shown
above for the intermediate Γ regime.
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Parameters for (a, d) are noted in Table 1. For (b, e): U/Ec = 4, Γ/U = 0.05, V = 0. For (c, f): U/∆ = 4, Γ/U = 0.05, V = 0. N = 800
in all cases.
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Supplementary Fig. 10. Tuning the Coulomb repulsion in the two-island device. a Scanning electron micrograph of the SI-QD-SI device,
comprising an InAs nanowire with Al SIs (below top gates SL and SR). Top gates 3 and 5 confine a QD below top gate N. Top gates 1 and 7 are
shorted to top gates SL and SR, respectively. Scale bar is 100 nm. b Electrostatics of the device. c, d, e Zero-bias G versus gate voltage of the
right SI, VSR, and gate voltage of the QD, VN, from which the data plotted in Fig. 4 (indicated here by vertical bars) was extracted. Other gates
are set to (c) VSL = −761 mV, V3 = −505 mV, V5 = −330 mV, Vbg = −0.05 V, (d) VSL = −536 mV, V3 = −443 mV, V5 = −170 mV,
Vbg = −2.69 V, and (e) VSL = −260 mV, V3 = −830 mV, V5 = 150 mV, Vbg = −0.48 V, with V5 controlling ΓR by accumulating electrons
in the nanowire. VSL corresponds to nSL =even, where the left SI does not play a role in defining the GS. Approximate charges in the parts of
the device (nSL,nN,nSR) are indicated. Tuned by VSR, EcR −∆R increases progressively from bottom to top in (c) and from top to bottom
in (d, e), expanding nSR = 1 sectors. Charge sectors are identified by the approximately integer occupations in the three Coulomb-blockaded
parts of the device (nSL,nN,nSR) indicated in red. The singlet assignment in (e) is verified by the B dependence of the stability diagram (see
Supplementary Fig. 11). f, g G versus VSR and source-drain bias voltage, Vsd, with VSR swept along the dashed line in (d), where nQD = 2,
and in (e), where nQD = 0. The true zero bias (indicated by a dashed line) is offset by Vsd = −18 µV. When EcR − ∆R < 0, the vertices
of the Coulomb diamonds do not touch zero bias, while for EcR −∆R > 0 small diamonds emerge. Bars indicate how EcR −∆R relates to
these features. Asterisks denote gate glitches.
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Supplementary Fig. 11. Corroboration of the singlet assignment in Supplementary Fig. 10e. Zero-bias G versus gate voltage of the right
SI, VSR, and gate voltage of the QD, VN, at different magnetic field B values. Other gates are set as in Supplementary Fig. 10e. Green bars
highlight the expected reduction with B of singlet domains in their VSR extension, which corroborates their spin assignment.
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a
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Supplementary Fig. 12. Possible extensions of the QD-SI and SI-QD-SI devices. a Array of QD-SI dimers, with each QD and SI having an
electron and quasiparticle, respectively. The array has an even number of elements. The SI and QD at the ends of the array are not part of a
dimer. Instead, they form a long-range singlet. b Recursive screening of a SI-QD-SI array. The arrays have an odd number of elements, with
two end elements added in each iteration. The arrays simulate the intermediate coupling fixed point of the two channel Kondo model when
they incorporate a sufficiently large number of elements. The ground state of these arrays is an overscreened doublet with long-range triplet
correlations between the end spins. The correlations are maximized when the Yu-Shiba-Rusinov antiferromagnetic binding interaction is (a)
strongly asymmetric between a given spin and its left and right nearest neighbors, or (b) symmetric between any spin and its closest neighbors.
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Supplementary Note 3. Model of the quantum dot -
superconducting island system

The QD is described as a single non-degenerate impurity
level, as in the single-impurity Anderson model (SIAM). The
SI is described as a set of equidistant energy levels that rep-
resent time-reversal-conjugate pairs in the momentum/orbital
space, coupled all-to-all by the pairing interaction. This step
beyond the BCS mean-field approximation is required to ac-
curately describe the strong even-odd occupancy effects of the
SI, which arise from its large charging energy Ec. The QD is
coupled to all levels of the SI via a hybridisation term. The
Hamiltonian used to model the system is

HQD = εQDn̂QD + Un̂QD,↑n̂QD,↓ + EZ,QDŜz,QD

=
U

2
(n̂QD − ν)2 + EZ,QDŜz,QD + const.,

(1)

HSC =

N∑
i,σ

εσ,ic
†
i,σci,σ − αd

∑
i,j

c†i,↑c
†
i,↓cj,↓cj,↑

+ Ec(n̂SC − n0)
2,

(2)

Hhyb =
v√
N

∑
i,σ

(
c†i,σdσ + h.c.

)
+ V (n̂QD − ν)(n̂SC − n0),

(3)

H = HQD +HSC +Hhyb. (4)

Here dσ and ci,σ are annihilation operators of the QD and
the bath, σ =↑, ↓, n̂QD,σ = d†σdσ are impurity occupancy op-
erators, n̂QD =

∑
σ n̂QD,σ , and Ŝz,QD = (n̂QD,↑− n̂QD,↑)/2

is the impurity spin operator in the direction of the external
magnetic field. εQD is the energy of the impurity level, U
the electron repulsion, EZ,QD = g0NµBB is the impurity
Zeeman energy, where g0N is the corresponding bare g-ratio,
µB is the Bohr magneton, and B the magnetic field, while
ν = 1

2 − εQD

U is the energy level in units of electron number.
The superconductor energy levels εi are spaced by d =

2D/N , where the index i = 1, . . . , N , D is the half-
bandwidth and N is the number of levels. α is the strength
of the pairing interaction, EC is the charging energy and n0

is the gate voltage applied to the SI, expressed in the units
of electron number. The number of electrons in the island is
n̂SC =

∑
i,σ c

†
i,σci,σ . The SI Zeeman energy is incorporated

in the energy levels as εσ,i = εi + nσEZ,SI/2 where n↑ = 1
and n↓ = −1, EZ,SI = g0SµBB.

The hybridisation strength is Γ = πρv2, where ρ = 1/2D
is the normal state bath density of states. The V term de-
scribes the capacitive coupling between the QD and the SI,
which was found to be important to correctly reproduce the
charging diagrams of the device studied in this work. We take
the half-bandwidth D = 1 as the unit of energy.

The hybridisation strengths of SI and QD with the neigh-
boring lead, Γsource and Γdrain, respectively, do not enter the

Hamiltonian directly. They are assumed weak and their small
effect on the system can be accounted through a small renor-
malization of other parameters.

For exploring the vast parameter space of the model, we
found it useful to perform quick simulations with a signifi-
cantly smaller system size of N = 20 and a larger value of
α = 0.4, so that ∆ ≈ 0.16D. To compensate for the very
large finite-size effects in this case, we corrected the resulting
eigenvalues by subtracting the product of d/2 and the absolute
value of the excess charge in the superconductor (for excess
charge less than 2 in absolute value). This correction proce-
dure works surprisingly well. Further improvement is possi-
ble by averaging even-N and odd-N results since the N → ∞
limit is approached from different sides [9], leading to a sig-
nificant cancellation of finite-size effects.

Highly converged simulation results that we used for di-
rect comparisons with the experimental measurements in the
main text of this work were performed for a very large num-
ber of bath levels, N = 800. This value is large enough to
minimize the finite-size effects even without finite-size cor-
rections. With finite-size corrections, equivalent results can
be obtained for significantly smaller system size, N = 200.
We set α = 0.23, a magnitude appropriate for Al grains [10],
which determines the superconducting gap in the absence of
impurity, ∆ = 0.026D.

The calculations were performed using the DMRG as de-
scribed in Supplementary Ref. [9] with three modifications of
the matrix-product-operator (MPO) expression of the Hamil-
tonian: 1) incorporation of the QD-SI capacitive coupling
V (n̂QD − ν)(n̂SC − n0), 2) addition of the impurity Zeeman
term EZ,QD, 3) addition of the bath Zeeman term EZ,SI. The
full expression of the MPO is as follows (notation follows that
of Supplementary Ref. [9]). Left-most site (impurity-site):

W0 =
(
I himp −d↑F −d↓F +d†↑F +d†↓F 0 0 V n̂imp

)
(5)

Here himp = (ϵimp − V n0)n̂imp + Un̂imp,↑n̂imp,↓ +

EZ,QDŜz,QD and F = (−1)n is the local fermionic-parity
operator, which gives a phase of −1 if there is an odd number
of electrons on the site.

Generic site (with g = αd):

Wi =



1 hi 0 0 0 0 gci↓ci↑ gc†i↑c
†
i↓ 2Ecn̂i

0 I 0 0 0 0 0 0 0

0 vc†i↑ Fi 0 0 0 0 0 0

0 vc†i↓ 0 Fi 0 0 0 0 0
0 vci↑ 0 0 Fi 0 0 0 0
0 vci↓ 0 0 0 Fi 0 0 0

0 c†i↑c
†
i↓ 0 0 0 0 I 0 0

0 ci↓ci↑ 0 0 0 0 0 I 0
0 n̂i 0 0 0 0 0 0 I


,

(6)
with hi = [ϵi − V ν + Ec(1 − 2n0)]n̂i + EZ,SIŜz,i + (g +

2Ec)n̂i↑n̂i↓, where Ŝz,i = (n̂i↑ − n̂i↓)/2.
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Right-most site:

WN =



hN

I

vc†N↑
vc†N↓
vcN↑
vcN↓

c†N↑c
†
N↓

cN↓cN↑
n̂N


. (7)
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