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Abstract

We propose a set of variational wavefunctions for the sub-gap spin-doublet and spin-
singlet eigenstates of the particle-hole symmetric superconducting Anderson impurity
model. The wavefunctions include up to two Bogoliubov quasiparticles in the contin-
uum which is necessary to correctly capture the weak-coupling asymptotics in all pa-
rameter regimes. The eigenvalue problems reduce to solving transcendental equations.
We investigate how the lowest singlet state evolves with increasing charge repulsion
U, transitioning from a proximitized state (a superposition of empty and doubly occu-
pied impurity orbitals, corresponding to an Andreev bound state) to a local moment
that is Kondo screened by Bogoliubov quasiparticles (Yu-Shiba-Rusinov state). This
change occurs for U = 2A, where A is the BCS gap. At this point, the band-edge ef-
fects make the eigenenergy scale in a singular way as I'2/3, where T is the hybridization
strength. Away from this special point, regular I'-linear behavior is recovered, but only
for I' < (U/2—A)2/A. The singular behavior thus extends over a broad range of param-
eters, including those relevant for some quantum devices in current use. The singular
state is an equal-superposition state with maximal fluctuations between the local im-
purity charge configurations. Accurately capturing the band-edge singularity requires
a continuum model, and it cannot be correctly described by discrete (truncated) mod-
els such as the zero-bandwidth approximation or the superconducting atomic limit. We
determine the region of parameter space where the second spin-singlet state exists: in
addition to the whole U < 2A ABS region, it also includes a small part of the U > 2A YSR
region for finite values of I, as long as some ABS wavefunction component is admixed.
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1 Introduction

The Anderson impurity model with a superconducting bath is one of the paradigmatic mod-
els in the field of nanophysics, capturing the main properties of systems such as magnetic
adsorbates on superconducting surfaces and quantum dots in contact with superconducting
leads [1]. It is also relevant for hybrid semiconductor-superconductor quantum devices with
potential applications in quantum information processing [2—-4]. The Hamiltonian consists of
a single impurity level e; with electron-electron repulsion U, hybridized with strength T to
a superconductor (SC) with a gap A. Near half-filling, for e; ~ —U/2, the system has up to
three discrete low-lying many-particle eigenstates: one spin doublet as well as one or two spin
singlets [5,6]. In the doublet state, the dot is occupied by a single electron. How the lowest
singlet state is obtained from this doublet by adding one particle to the system depends on
the relative magnitudes of U and A. If U is small, an electron or a hole can be added to the
impurity level itself, incurring an energy cost of min(U + €4,—€,4) ~ U/2. If U is large, it is
energetically more favorable for an electron or a hole to be added to the superconducting bath
in the form of a Bogoliubov quasiparticle, with an energy cost of A. In the first case, the result-
ing singlet state is typically referred to as the proximitized level or the Andreev bound state
(ABS), because the impurity wavefunction can be well approximated by a linear superposition
of empty and doubly occupied states. In the second case, it is known as the Yu-Shiba-Rusinov
(YSR) state, due to the similarity with the situation in the classical magnetic impurity Hamilto-
nian [7-9], but with quantum fluctuations generating a true singlet state between the impurity
spin and the Bogoliubov quasiparticle from the static product state of anti-aligned spins. At
the boundary between the two regimes, for U ~ 2A, the wavefunction has a mixed character
and no simple physical picture has been proposed to describe this situation yet.
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The YSR singlet can be viewed as the superconducting analog of the Kondo singlet ground
state in the Anderson impurity model with a normal-state bath. The Kondo problem is non-
perturbative and characterized by a non-trivial low-energy scale, the Kondo temperature
Tx ~ exp(—8T'/nU). A detailed solution can be obtained numerically using impurity solvers
such as Wilson’s numerical renormalization group [10-13], or quantum Monte Carlo [14], but
the essence of the problem can also be captured with remarkably simple variational wavefunc-
tions that reproduce the exponential dependence of the characteristic energy scale on model
parameters. The Yosida Ansatz focuses on the situation of half-filling in the Kondo Hamilto-
nian [15-17], the Appelbaum Ansatz is a generalization to the Anderson Hamiltonian [18],
while the Varma-Yafet Ansatz also captures the physics of valence fluctuations [19]. Gunnars-
son and Schonhammer further developed this approach for multi-orbital impurity problems,
including with higher-order terms with multiple excitations in the bath, and remarking on the
connection to the Brillouin-Wigner perturbation theory [20]. Variational methods have later
been generalized to the superconducting case, first by Soda, Matsuura and Nagaoka for the
Kondo Hamiltonian [21-24]. While Kondo and Anderson impurity models with a normal-state
bath are related in a simple way by the Schrieffer-Wolff transformation [25], the situation is
more complex in a problem with a superconducting bath and depends on the ratio U/A. For
this reason, the variational wavefunctions for the Kondo Hamiltonian only describe the deep
YSR limit and cannot capture the ABS physics. Later, a Varma-Yafet-type variational Ansatz was
proposed for the U = oo limit of the Anderson model [26]. This approach cannot describe
the ABS regime either.

In this work we propose variational wave-functions for the superconducting Anderson im-
purity model that includes terms of appropriate types for both ABS and YSR states. The Ansatz
is hence applicable for all values of U. The resulting variational equations are integral equa-
tions that reduce to transcendental equations for the eigenvalues. We analyze the solutions
with a particular focus on the non-trivial cross-over regime of U ~ 2A, and discuss the sin-
gular behavior arising from the band-edge singularity physics, i.e., from the mixing between
the discrete ABS-type states and the YSR-type states that involve the continuum of Bogoliubov
quasiparticles. We determine the region in parameter space where the second singlet state
exists inside the gap. We discuss the local properties of the states, their composition, as well
as their spatial extent (specifically the localization length of the bound Bogoliubov quasiparti-
cles).

2 Model

We consider the Anderson impurity model with a superconducting bath, sketched in Fig. 1(a)
and described by the following Hamiltonian:

H:Himp +HBCS +HC' (1)

The first term describes the impurity orbital d:

1
Himp = edZ(nU_E) + UTlTTll,
(o)

where €, is the impurity level and U the Coulomb repulsion, n, = dg; d,, and d,; is the annihi-
lation operator for spin o on the impurity site. The following discussion assumes particle-hole
symmetry, defined by the condition e; = —U/2. The energy is shifted by —e, so that the
energy of singly occupied isolated impurity is zero. The second term is the mean-field BCS


https://scipost.org
https://scipost.org/SciPostPhys.19.1.006

e SciPost Phys. 19, 006 (2025)

Hamiltonian describing the superconducting bath:

Hpes = Z €kci’ock’a —A Z (CZ’TCik’l + h.c.) .
k,o k

Here &, = €, —u is the single-particle dispersion (shifted by the Fermi level) of the conduction-
band electrons and A is the superconducting gap. The ground state of the Hyg is given by:

BCS) = [ [ +viey 1c7, )10) @)
k

where u;, = %(1 + %)’ Ve = %( - %) and E; = 4/A2+&2. The choice uy, v, € R was
made as only the case A € R is considered. The Bogoliubov transformation diagonalizes the
BCS mean-field Hamiltonian, where the quasiparticle operators v ,, are defined as:

— T
Vit = UkC,t — ViCoy y >
o= T
Y—k,l = ViCk,1 + ukc_k’l .
In the continuation of this work, we use the Bogoliubov operators to construct states in the

variational Ansatz.
The third term couples the dot with the lead:

H. = V% %: (c;';’ada + h.c.) .

Here N is the number of levels in the bath. The energy scale of hybridization is defined as
I' = npV?, where the density of states p = 1/2D is chosen to be constant in the energy
interval [—D : D].

We note here that the whole Hamiltonian has the particle-hole (ph) symmetry. To see this,
we define the ph transformation through

d, — —d; s Cho — Ci]_(,é- . 3)

Here & inverts spin from 1 to | and vice-versa. Furthermore, k corresponds to the momentum
state that is conjugate with the momentum state k with respect to the Fermi level, so that
& = —&1. This also implies u; = v¢. Under the transformation, the ground state remains the
same and the Bogoliubov operators transform as

Ykt ukCik’l Vil = V;%Cl,;’l Uil = Vo @

i T o — AT e —
Y—k,l, - ch_l—{’l + Ukck’T - ukC_l-(’l + chk’T - Y—i{,l .

In the following, we will quantify the deviation from the special point U = 2A by the
dimensionless parameter 6 defined through

U=2A(1+0). (5)
In the atomic limit (' = 0), the energy of the singlet, Eg(T'), is given by
. (U
ES(O):mm{E,A} >0. (6)

The two possibilities correspond to the two types of singlets states, ABS for 6 < 0 and YSR for
6 > 0. The nature of the states is depicted schematically in Fig. 1(b). We draw attention to the

4
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Figure 1: a) Schematics of the model. b) Energy cost for creating low-energy spin-
singlet excitations in the I' — O limit and the physical nature of the these states
(proximitized states vs. exchange singlets). The shaded region corresponds to the
continuum of singlets formed through the antiferromagnetic Kondo exchange cou-
pling between the Bogoliubov quasiparticles and the impurity spin. c) “Phase” dia-
gram of the problem. The singularity at the U = 2A,T = 0 point influences a sizable
region of the parameter space. This is the region of very strong mixing between the
ABS and YSR components of the wavefunction, where the singlet state has proper-
ties different from either limiting type of behavior. It should be noted that at finite
T' the variation as a function of U is continuous: the region of singular behavior is a
smooth cross-over between the ABS and YSR regimes. The maximal mixing occurs in
the vicinity of 68 = 0, where the equal-superposition state with maximal fluctuations
between impurity charge states is found (see Sec. 6). Along that vertical line the
non-analytical behavior with fractional exponents is observed for all values of T.

fact that for 6 = 0, the ABS-like state becomes degenerate with the bottom of the continuum
of YSR-like spin singlets [6]. At finite hybridization, the energies will decrease due to the
rearrangement of the quasiparticles in the system. We define the binding energy of the singlet
state as

Epina(T) = Es(T' = 0) — E(T). )

This is the quantity of main interest in this work.

3 Variational approach

We now introduce variational wavefunctions for low-lying energy states in spin-doublet and
spin-singlet subspaces. In order to validate the results, we make comparisons against high-
precision reference results obtained using the numerical renormalization group (NRG) method
[10,13,27-31].
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3.1 Doublet state

To describe the doublet state in the small hybridization limit (I' — 0), we use a variational
Ansatz |¢p) = Y. |$;) with wavefunctions that contain up to one Bogoliubov quasi-particle:

1) = ad] 1),

1+did]
1%+
o) = Zm—ﬁﬂ%) ,
. V2 ’ (8
1—did]
T 5
|¢3> :ka YkT|<I)0> >
X V2 ’

where |®,) represents the state with the empty dot level and the SC leads in the BCS ground
state:

|®0) = |-) ® [BCS) , )
and a, uy, v, are complex-valued variational parameters such that
(plo) =lal+ > Il + D v =1. (10)
k k

The energy of the doublet state (Ep) and the variational parameters a, U, v, are obtained by
finding the extremal value of f = (¢p|H|¢p) — Ep((¢p|¢) — 1), i.e., by taking derivatives with
respect to a*, v; and u;:

1% \%4
Epa= Worsi zk:(Uk — ViU + Wori Zk:(uk + Vi) vk (11)
U V
(ED—Ek—E)MkZClm(uk—Vk), (12)
ED—Ek—H vk=a v (uk+vk). (13)
2 v 2N

We switch to the continuum notation by relabeling &, — x and Ej, vy, u, tx, Vi — E(x), v(x),
u(x), u(x), v(x), where x is now an energy variable. The normal-state DOS p is constant, so
that (1/N) Zk —p f dx. After inserting Egs. (12),(13) into Eq. (11) we obtain a transcen-

dental equation for Ep:
r(° dx
Ep=—— J —_— (14)
This equation can be rewritten in closed form:
4(A(1+6)—Ep)
V—(Ep — AB)(Ep — A(2+6))

r
Ep=——|Chana +
T

( V—Ep+A(2+6) —D+vVD2+A2—Ep+A(1+6) )]
X | arctan —arctan
E,— A0 v (Ep — AO)(—Ep + A(2 + 0))

where ¢, = 2log m. To investigate the ' — 0 asymptotics, we neglect E, in the
right-hand side of the expression, as limy_,q Ep, = 0. Since we work in the A < D limit, the
expression can be further simplified by neglecting ¥ D2 + A2 — D in the second arctan term.
After using the addition formula for the two arctan terms, we obtain the simplified expression
for Ep(T, 0):

r
Ep ~——gp(0),
T

4(1+6) —0

——FF— arctan .
V=0(2+0) 2+6

6

(15)
gp(0) =
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‘ : ‘ - 6
-1.0 05 0.5 1.0

Figure 2: Prefactor g,(0) in the I'-linear dependence of the doublet eigenenergy,
Ep ~—(T'/m)gp(0).

Note that this expression is real for both 8 < 0 and 6 > 0; in the latter case, the minus in
front of 6 is lost and arctan becomes arctanh. The function is continuous across 6 = 0 and
goes to zero for & = —1 which corresponds to U = 0, see Fig. 2. In Fig. 3, we show that both
the numerical solution of Eq. (14) and the low-T' expansion in Eq. (15) agree with the NRG
data for small and intermediate values of T.

3.2 Singlet state

We estimate the energy of the lowest-lying singlet in a similar way, by proposing a variational
Ansatz |¢p) = . |y;) with the following components:

) = % (1+d d/) %) ,

) = 5 2 (1—-dld])Ie,),

[s) =; f(dml dlyl )12, 6
|¢4>=I<Zk;ﬁ5§ (1+dfd])ri i, 120)

)=, = (1= dfd]) i o)

In the 8 < 0 regime, the ABS states v, and 1, are the lowest-lying singlet eigenstates in the
atomic limit. The same holds for the YSR state 15 in the 6 > 0 regime. We find that in order
to correctly capture the low-I' asymptotics all states that are directly coupled with the lowest-
lying atomic-limit eigenstate need to be included in the Ansatz. Thus, the two-quasiparticle
states 14 and 15 are required to correctly describe Eg(T") in the YSR regime. This observation
is key to obtaining the correct results.! We return to this point in Secs. 5 in 7.

Due to the ph symmetry of the problem, the variational equations in the even-parity and
odd-parity sectors decouple. By the rules from Eq. (4), we find that v); is a ph-even state,
while v, is a ph-odd state. Furthermore, )3 is ph-even if a;, = aj, or ph-odd if a; = —a;.
Finally, v is ph-even if 8 j» = —f¢ g, odd if By i » = By > and Y5 is ph-even if 7y = 71 )

In the flat-band limit, where the conduction band is conflated to a single effective level that hybridizes with the
impurity, it is likewise important to include up to two quasiparticles in order to reproduce the exact eigenvalues of
the impurity model with a Richardson model bath, see Fig. 7 in Ref. [32] Another situation where two-quasiparticle
states are crucial is the two-impurity problem, see Ref. [33].
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Figure 3: Variational estimate of the doublet state energy Ej, vs. T for different values
of 6. The solution of Eq. (14) is shown in blue, the expansion from Eq. (15) is shown
in orange, while the NRG results are shown with red dots.

odd if Ty, = —Tj - Since for a ph-symmetric problem, all eigenstates have a definite parity,
we can form spin-singlet states of two types: 1) ph-even states composed of v, 13 with even
a, Y4 with By = —ff & and Y5 with 7y 1o = T  2) ph-odd states composed of Y, 13 with
odd a, Y4 with By ,» = ff i and Ty » = —7¢ - In the absence of the particle-hole symmetry,
(3 |H|+) includes terms of the type a;a;(e + U/2)+ H.c., which describe mixing between the
even and odd-parity sectors.

The problem of finding the energy of the singlet state is equivalent to the minimization
of the expectation value of the Hamiltonian (y)|H|v), with a constraint originating from the
normalization condition:

(plp) = D Nail?+ D o+ D B[ + D |raw| = 1. %)
i k

k,k! k,k’

The explicit expression for (y|H|vy) and the discussion about the different contributions to
the expectation value can be found in Appendix A. The energy of the singlet state (Eg) and
the variational parameters a;, o, By r» and Ty - are obtained by finding the extremal value of
f = (YH[) —Es({(y|p) — 1). Taking derivatives with respect to aj, a;, oy, By > T i Tesults
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in the following equations:

o (v +ug), (18)

a(ve —uy), (19)

14 14
—=tu) +ay—=

«/_ VN
e /T / / jp— Y Y /. 20
+ Wi ;(uk Vi) B + Wi ;(uk + V) Thk (20)

(Ve — )

U 1% 1%
Ec———(E +E,) )= oy (U —vi) + U —vi)ay, (21)
(s B k k) /3k,k 2,—Nkk k 2,—N(k L
(E ———(Ex+E ))r = ——o(up +ve) + (. +vi) (22)
/ / A \Upr Vir u Vi )JQgr .
52 g k ok 2vN KTk « 24N TR

Note that the expression for f needs to be properly symmetrized before the derivatives are
taken. In the atomic limit (V — 0), the solution is E¢ = min{U/2, min; E;} = min{U/2, A},
corresponding to E;,q = 0, as expected.

Again we switch to the continuum notation by relabeling &, — x and
Er, Vi, U, o, — E(x),v(x),u(x),a(x). The quasiparticle energy E(x) is an even function,
while the coherence factors are related by u(—x) = v(x). The variational equations contain
factors s(x) = v(x) + u(x), which is an even function, and a(x) = v(x) — u(x), which is odd.
The equations decouple algebraically into two parity sectors, because f f()s(x)dx filters out
odd f(x), while ff(x)a(x)dx filters out even f (x).

3.2.1 Even-parity sector

Here a; # 0 and a, = 0. We note that if a(x) = a(—x), the even parity conditions are also
automatically satisfied for vy, and ¢)5 i.e. B(x,x") = —p(—x,—x") and 7(x, x") = T(—x,—x").
By expressing a;, 3(x,x”) and 7(x,x’) from Egs. (18), (21) and (22) and taking them into
Eq. (20), we get:

I s(x)
(Es — E(x))a(x) = —E 7 S(x Ja(x")dx" + a(x)= J m
s(x )a(x’)
where N,(x,x") = ES—%—[E(X)—FE(X/)]. Introducing auxiliary quantities I,(x) = BD Nz((ij,/x’)’

Ni(x) = E¢ — E(x)— %Iz(x) and ffD s(x)a(x)dx = C, Eq. (23) can be rewritten in a more
compact form:

T s(x)C T s(x) b s(xNa(x")dx’
T (ES —%)Nl(x) 2n Nl(x) -D NZ(X7 X/)

(24)

This is a Fredholm-like integral equation with a kernel that depends on the eigenvalue Eg. The
kernel is not separable, which prevents one from simply integrating both sides and obtaining
an equation for the eigenvalue Eg. We instead proceed by inserting the equation for a(x) into
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itself, more specifically into the second term on the right-hand side:

r s(x)C N 2 cC JD s(x)s?(x")dx’
7r (ES - %)Nﬂx) 212 Fg — % _p N1 (N, (o, x")N7 (x7)
N r2 JD s()s(x)2s(x)a(x")dx'dx"”
(2m)2 J_p N1 ()N, (x, x )Ny (x"INo (7, x")

This step is repeated iteratively, obtaining a series in I'. We then multiply both sides with s(x)
and integrate. C cancels out and we obtain a transcendental equation for Eg:

f s2(x;)dx;
2= Z , (25)
27T —pien N1(xim1)No (g, X;)N; (x;)
where N;(x_;) =1 and Ny(x_;,x9) = 1.

Eq. (25) can be solved numerically by keeping some finite number of terms in the sum.
In Fig. 4 the solutions with one and two terms are shown. The solutions of the equation
with two terms give slightly better results for intermediate and large values of I'. Going to
higher orders in I' is computationally expensive, since high-dimensional quadratures need to
be evaluated numerically, and is not expected to lead to much improvement. For large values
of I' the variational Ansatz would instead need to be extended with wavefunctions that include
a larger number of Bogoliubov quasiparticles [34]. The approach described here works best
for low and intermediate values of I', where it appears that even the lowest-order expansion
in I' produces quite reliable results. The range of validity is further assessed in Sec. 8. (See
Ref. [35] for a strong-coupling approach to the same problem using a 1/T" expansion.)

3.2.2 Asymptotic behavior of the lowest-lying singlet state
To lowest order (truncation to one term) Eq. (25) reads:

U EJD s2(x)dx
p Es —E(x)—(T/m)I,(x)

—+
2 7

To obtain the asymptotic behavior of the binding energy in the I‘ — 0 limit, we rewrite this

equation in terms of Ej; 4. In the ABS regime, this means Ey; 4 = 5 — Eg, i.e.:
b 52
r (x)dx
Ebmd f (27)
E(x)=U/2+ Eping + (T/m)I5(x)

Since E(x) > % is always finite for U < 2A, the part of the numerator that depends on I' can
be neglected for I' — 0. This includes the binding energy on the right-hand side as we expect
Eping ~ T for small I'. We thus get the expression for the binding energy in the 6 < 0 regime

to the lowest order in I': 5
r 2(x
Epng & —f L)de. (28)
T ) _pEx)—5
This can be evaluated to a closed-form expression:

r 0 D—+v/D2+ A2+ A(1+6) r
Epin ~—4(2+9)(arctan ——— +arctan + —Cpand» (29)
b J 2+6 AV=B2+6) m e

10
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where cp,nq = 21l0g Mﬁ' This can be simplified for A < D by neglecting D — v D2 + A2

in the second arctan term. We then use the arctan addition formula to obtain a compact

expression:

r
Eping & gABS(Q)E ,

gaps(0) =4\ —220 arctan '\ —%.

6=-0.5
< 10
~ 27
o P
£ &
oy o
w P
10_1 7 '//{
r 4
4
107 10t
r/A
6=-0.05
,"//;T 0| //,/
1071 ,J/’f//i 10 ,::/’//
g el 4 -
\U ol \U 7
S y g s
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Figure 4: Variational estimate of the binding energy Ey;.4 vs. T for different values
of 6 compared with the reference NRG results. Variational estimates are obtained
by numerically solving Eq. (25), in which the high-order terms are neglected. The
blue solid lines represent the solutions where only one term was kept, while the
orange solid lines represent the solutions where the first two terms were included.
Linear expansions from Egs. (30), (32) are shown with dashed green lines. The NRG
reference is shown with red dots.
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10 -08 -06 -04 -02
Figure 5: Prefactor g gs(60) in the I'-linear dependence of the doublet eigenenergy.
The function g,ggs is plotted in Fig. 5. It diverges for 6 — 0, signaling the breakdown of the

[-linear expansion in this limit.
In the YSR regime the binding energy is Ey;,q = A — Eg, so Eq. (26) can be rewritten as:

r JD s2(x)dx

(31)

En 1= — .
P ) E(x) — A+ Eying + (T/m)I5(x)

—D

Here, the expansion cannot be done in such a straightforward manner because
lim,_,o(E(x)—A) = 0 means that the denominator terms dependent on I' cannot be neglected.
By surveying the NRG data and the numerical solutions of the variational equations, we notice
that in the YSR regime, —Ep, and E};,q match in the leading order of T, that is, (Ey;,q—Ep) ~ I'2.
Therefore, up to first order in I', the binding energy in the YSR regime is:

r
Eping ~ gysr(0)—,
n
gysr(0) = gp(6),

with g,(0) defined in Eq. (15). This observation about the relationship between the singlet
and the doublet states in the weak coupling regime is particularly interesting in light of the
recently explored relation between the singlet and the doublet in the strong-coupling regime
[35].

(32)

3.2.3 0Odd-parity sector

We now consider the odd-parity spin-singlet sector with a; = 0, a, # 0, and odd a(x). As
before, the parity of a enforces the suitable parity of 8 and 7 via Egs. (21), (22). After
combining the minimization equations by analogy to the even-parity case, we get a similar
equation for the energy of the odd-parity singlet state E,:

0 n (D 2
Uu T r l—[ a®(x;)dx;
Ey=5 = RZHZO(ZTC) f ©3)

2 2 2 ’
0 i<n NP NP (xi, x NP (x;)

where the superscript (2) denotes that E, now takes the place of Eg in the definitions of N;(x)
and N,(x, x"). The only essential difference between Eq. (33) and Eq. (25) is that a(x) appears
in place of s(x).

Although it can be shown that the even-parity state always has lower energy, the odd-parity
state can also be physically relevant, as it lies in the gap (E, — Ep < A) for certain values of
U, T [6]. More specifically, the second singlet state is always in the gap for 6 < 0 (i.e., in

12
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the ABS regime), whereas Eq. (33) dictates the existence of the second in-gap singlet state for
6 > 0 (in the YSR regime). The energy dependence of the odd-parity singlet state close to the
U = 2A point is presented in Fig. 6(a) for a range of hybridization strengths.

The parameter space is thus partitioned into two subspaces depending on whether the
odd-parity solution is in the gap, see Fig. 6(b). In fact, this line can serve as a possible defi-
nition for the boundary line separating the ABS and YSR regimes at finite I', since one of the
characteristic features of the ABS regime is the possibility of holding zero, one or two Bogoli-
ubov quasiparticles in the level (corresponding to the even-parity singlet, the spin-doublet,

(a)

CONTINUUM

r/A=1071

o [/A=5%x1072
r/A=10-2
r/A=1073

6

r/A

1073

-4
—0.050-0.025 0.000 0.025 0.050
e

Figure 6: Variational estimates and NRG reference results for the energy of the sec-
ond in-gap singlet state shifted by the ground state energy, E,(T',8) — Ep(T, 0), as
a function of T and 6. (a) E4(6)— Ep(0) at different values of I'. The variational
estimates were obtained by taking into account the first or the first two terms in
Eq. (33) and they are shifted by the variational estimate of the doublet-state energy
from Eq. (15). The single-term solutions are shown with solid lines, while the two-
term solutions are shown with dashed lines. The NRG data is shown with symbols
(circles). (b) Energy of the second in-gap singlet state as a function of I and 6 as
obtained by NRG (color coded). The shaded yellow region represents the part of the
parameter space where the second singlet state is not in the gap, but rather dissolved
in the Bogoliubov continuum. The analytical estimate of the boundary between the
two regions, obtained by taking into account the first (two) term(s) in Eq. (33) is
shown with the solid blue (red) line.
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and the odd-parity singlet states, respectively). An equation for the boundary can be obtained
by inserting the condition E, = A — Ej, into Eq. (33), which, to the lowest order, reads:

r U T b a?(x)dx
A+gp(0)= == +— : >4
ten(0)y 2+nf_pA+gD(9)%—E(x)—(r/nﬂé”(x) o

where Ej, is estimated using the approximate Eq. (15) and E, in I 52)()() is replaced by

E, = A+ gD(Q)%. The solution of this equation is shown as the blue line in Fig. 6(b). The
equation of the boundary at large T is significantly improved by also taking into account the
subleading term in Eq. (33), see red line in Fig. 6(b).

4 Cross-over from ABS to YSR regime

The variation of the eigenenergy of the lowest-lying singlet state with respect to U and T,
as obtained using the NRG, is presented in Fig. 7. Asymptotically for I'/A — 0, the binding
energy Fynq vs. ' is a power-law:

Ebing(T) (E)v (35)
A A)

For O # 0 we find that the asymptotic behavior is always linear, v = 1. The case 6 = 0 is
exceptional: exactly at that point we find v =2/3.

(b)

1 J
2 /\
— r=0.50A
— r=0.25A
" r=0.104A

Es/A
Lo
EpinalA

[

=0.01A
4
-2 01, !
0 4 0 2 4
u/A u/A
(c) (d)
2 4
q < 1071+ — 16]=0.0
E 1 E |6]=0.25
h W 10-3 - l61=0.5
0. t t
0.0 0.2 0.4 103 107!
/A r/A

Figure 7: Properties of the lowest singlet state as a function of I and U computed
numerically using the NRG. (a) U-dependence of the singlet eigenenergy Ec for a
range of values of I'. The values of U (0) that correspond to curves in panel (c) are
marked with blue arrows. (b) U-dependence of the singlet binding energy Ey;,q4- (c)
I'-dependence of Ey;,q4 for a range of values of the parameter 9; full lines correspond
to 6 < 0 (ABS regime), dashed lines to 8 > 0 (YSR regime). The values of I' that
correspond to the curves in panels (a) and (b) are marked with red arrows. (d)
Same data as in panel ¢, but on a log-log scale. Note the difference in the slope (i.e.,
different power-law exponents) between 6 = 0 and 9 # 0 for low T'.
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For finite I', we define an effective exponent through the logarithmic derivative

E in (F)
dIn 2=

(36)
dln £

Vetf =

Using the NRG data, in Fig. 8 we plot the variation of v.4 as a heat map in panel (a), and
in the form of constant-U 1D cross-sections in panel (b). The I'-dependence of the binding
energy crosses-over from the weak-coupling linear behavior to a different power-law regime
at strong coupling (large I'), with an intermediate region of v &~ 2/3 for small values of 6.
The cross-over scales quadratically as

To/A~(6/A). (37)

The change of behavior is much more pronounced for 8 > 0, where v, shows a strongly
non-monotonic variation.

In Fig. 9 we plot the rescaled binding energy Ey;nq(I')/Epina(Ic) vs. T'/T;. For 6 < 0 there
is some degree of universality, while for 8 > 0 the curves overlap less well, with a pronounced
deviation as the 8 = 0 point is approached.

The exponent 2/3 is due to the band-edge singularity generated by a band with an inverse
square root divergence in the density of states at its edge, as is the case for the continuum
of Bogoliubov excitations. To see this, we study the resonant level model for an impurity at
energy € hybridizing with a band with the density of states

p = po(€/€0)*, (38)

with @ =—1/2 in the energy interval e € [0 : D]:
- Vv .
Hym=¢sf"'f +Zekg]igk+‘/—_2(frgk+H.c.). (39)
k N =

We now set €y =1 and D = 1 to simplify the expressions. The hybridization self-energy is

1 _1/2
S(z) = Vzpof € e 2arctanh(1/ /%) . 40)

o Z—€ Jz

We write z = w + i6 and perform an analytical continuation to the real axis by taking the
6 — 0 limit from above. For the real part of ¥ we find

ReZ(w)szpo%[arg(l—‘/%)—arg(1+1/%)] . (41)

For w just below 0, this simplifies to

ReX(w) = —\/L_, (42)
—w

where we defined I' = mp,V2. The bound state energy E is given by
€ +ReX(E)=E. (43)
For €, = 0, this gives —T'/v—E = E or

E=-T?8, (44)
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2

which concludes our derivation.

We remark that an anomaly at U = 2A has been noted before in the context of the flat-
band limit of Richardson model superconducting bath, but that calculation led to an exponent
of 1/2, see Eq. (68) in Ref. [36]. The exponent 1/2 actually corresponds to the behavior that
is linear in V. In that case, the anomalous result at U = 2A results from a trivial degeneracy
of discrete levels. Here, the exponent of 2/3 results from the degeneracy of the discrete levels
with the edge of the Bogoliubov continuum, and is a genuine band-edge singularity.

(a)

10—1 1.4
1.2
1073 /
1.0 8
1073
|
k 0.8
1077
0.0 1.0 2.0 3.0 4.0

<
=
u/A
(b)
1.8 — |6]=1072
|6] =10%
1.6 1
1.4
$
=Y

Figure 8: Effective power-law exponent v.¢ describing the local I'-dependence of the
binding energy Ey;,q as a function of T and U. The exponent is calculated by taking
the derivative of cubic spline interpolation of the NRG data for In(Ey;,q/A)(In(T'/A))
at different values of U/A. (a) Heat map in (U, T') plane. Black corresponds to linear
behavior. Blue color at U/A = 2 corresponds to v — 2/3 asymptotic behavior at
this singular point. (b) Constant-U cross-sections. Full lines: 6 > 0, dashed lines:
0 <0.

20ne could be tempted to try to explain the finite-0 properties using this simple resonant level model for non-
zero €. Alas, such approach is too crude. For €, < 0 one finds E = const. for low T', while for €; > 0 the asymptotic
behavior is E ~ T2,
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Eping(M)/Eping(Tc)
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S
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6] =10-3
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e M

Figure 9: Binding energy Ey;,q(I')/Epina(Ic) scaled as T'/T,. (a) YSR side for positive
delocalization parameter 6, (b) ABS side for 68 < 0.

5 Variational wavefunction properties

The quality of the obtained variational wavefunction can be assessed through its ability to
correctly describe the nature of the eigenstate, in particular the electron distribution in the
system. The reduced density matrix for the impurity level is calculated as the partial trace of
the density matrix over all possible bath states:

Pimp = (BCSIW) (Y[BCS) + D (BCS|yr0 [¥) (W7}, |%o)

k,o

k,k’,o,0’

+ > (BCSITkonTio W) (P17] oo Tk o IBCS)

because up to two-quasiparticle excitations occur in the Ansatz.
{I=),17),11),17)}, this can be written as

where

po 0 O

0 p1 O
pimp - 0 0 o
y 0 O

y
0

0
Po

Po= (|a1|2+|/5|2+|r|2)/2,

P1= |a|2/2>

y=(lar?+1BP=I71%) /2.

Here, we introduced the labels

2 2
lal? =" a2,
k

B2 =" 1Bl

k,k!

2 2
7l = il

k,k’

For p-h symmetric case, pg = p,.

17
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Figure 10: Diagonal elements of the reduced density matrix vs. I' and 6. Lines:
variational estimates, symbols: NRG data.
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Figure 11: Zero-, one- and two-quasi-particle state weights |a;|?,

fla(x)lzdx = la(x)?, f 1B (x, x")|?dxdx’ = |3|?, and f |7(x, x")|>dxdx’ = |7|? vs.
I'and 6.

To compute the matrix elements, we first express a(x) by neglecting the second, higher-
order term in Eq. (24):
s(x)

e R ror s

Q|
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We then obtain equations for a;, f and 7 by inserting this a(x) into Egs. (18), (21) and (22).
The constant C = ffD a(x’)dx’ can be determined from the normalization condition. The

matrix elements are finally obtained by integrating the expressions for |a(x)|?, |8 (x,x’)|? and
|7(x,x")|? in the continuum limit.

The excellent agreement of these expectation values with the reference NRG results, see
Fig. 10, provides conclusive evidence confirming that the variational Ansatz accurately cap-
tures the main characteristics of the low-lying eigenstates.

An additional insight is offered by an analysis of the weights of the different terms in the
variational wavefunctions, see Fig. 11. The dominant part in the ABS regime is the local-pair
state (high |a;|?). In the YSR regime, it is the exchange coupled state (high |a|?). This is fully
expected and in line with the variation of p; presented in Fig. 10. We draw attention, how-
ever, to the two-quasiparticle terms (|3|2 and |7|?) that for & > 0 represent the subdominant
terms in the ' — O limit. The key role of the two-quasiparticle states in the YSR regime is
further established in Appendix A, where we consider the contributions of the different terms
in (y|H|¢y) and show that two-quasiparticle states produce the dominant linear-in-T" terms.

6 Equal-superposition state generating singular behavior

We have anticipated that the singular behavior is due to the mixing between the discrete ABS-
like states with the continuum of YSR-type singlet states. This can be seen quite directly by
examining the variational wavefunction for 8 = 0, see Figs. 10. There is an equal probability
for the impurity level to be occupied by 0, 1 or 2 electrons (py = p = p17 + p1; = 1/3), thus
this state corresponds to the case of maximal fluctuations between the different charge states.
With increasing I, the two-quasiparticle components lead to a small deviation from a perfectly
equal superposition.

7 Localization of quasiparticles in the YSR state

Since the variational solutions provide momentum/energy resolved wavefunctions, it is possi-
ble to study the localization of bound quasiparticles in the superconductor. Since in this work
we aim for simplicity, we neglect the detailed lattice properties. We have already assumed a
constant density of states and moved from the momentum space, k, to the energy space, x,
tacitly assuming a linear dispersion. At this level of approximation, the real-space dependence
(denoted by position r) can be simply obtained by a Fourier transformation from the x-space.

The behavior of the single-quasiparticle component of the wave function, parametrized by
a(x) or a(r), is presented in Fig. 12. As expected, for weak hybridisation the quasiparticle is
very weakly bound and thus delocalized over a large spatial region. As hybridization increases,
the quasiparticle localization length shrinks. The quasiparticle localization properties can be
extracted from the width of the peaks in the a curves, see bottom panels in Fig. 12. On the YSR
side (6 > 0), the localization behaves as 1/I", while on the ABS side (6 < 0) the localization
rate does not depend on I' asymptotically, which is in line with the character of the dominant
parts of the wavefunctions. For larger I' we find a 1/T"" behavior with 1) ~ 2/3 as we enter the
singular regime. This is yet another signature of the equal-superposition state.

Finally, we investigate the two-quasi-particle wavefunction. In the YSR regime, this com-
ponent was found to explain the binding energy dependence on I'. The weights 8 and 7 are
large close to x = 0 and x’ = 0 lines, or equivalently, close to the impurity position r = 0 in
real space, see Fig. 13. One quasiparticle is thus strongly localized at the impurity site, while
the other is delocalized over a large spatial region. This explains the singlet binding energy
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Figure 12: Quasi-particle weight a in momentum and coordinate space. r, are arbi-
trary units. The bottom panels show the half-width at half-maximum of the peaks in
the a distributions.

on the YSR side being nearly equal to the doublet binding energy, see Eq. (32): both receive
dominant contributions from essentially the same processes, whereby the impurity electron
hops to and from the bath, leading to order I reduction in energy. In the singlet state the sec-
ond quasiparticle is merely a spectator that ensures that the terms |vy4) and |¢)5) are overall
singlets. This is particularly striking in light of the recent observation that also in the strong-
coupling limit, I' — 00, the doublet and singlet states become essentially the same, up to the
nearly decoupled quasiparticle [35].

8 Relation to other methods and range of validity

Compared to the work of Rozhkov and Arovas, Ref. [26], our Ansatz includes the proper terms
for the finite-U situation at the particle-hole symmetric point. In particular, our singlet state
Ansatz includes two local terms (even and odd) and two kinds of two-quasiparticle terms,
while theirs has only one of each, omitting the double occupancy on the impurity site. Their
doublet state is, however, more general and also includes two-quasiparticle terms, which we
omit because we find that such terms do not bring about any new physical effects. The ap-
proach of Ref. [26] is limited to the U = oo limit and clearly does not apply to the U = 2A
situation.

The variational approach in this work also shares some similarity with that of Meng et
al., Ref. [6], who performed a perturbative expansion around the effective superconducting
atomic-limit Hamiltonian. Their method starts from the action after integrating out lead elec-
trons. The terms that correspond to the effective local Hamiltonian are identified, and the
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Figure 13: Two-quasi-particle weights  and 7 in momentum and coordinate space
at T/A = 2.5x 1072 and || = 0.05. r, are arbitrary units. The lines of constant
X, and ry, shown in the second and fourth columns, correspond to the indications in
the first and third columns.

remaining terms are found to be the tunneling coupling between the dot and the leads beyond
the lowest-order proximity effect. They perform the calculation to first order and resum the
leading logarithmic divergencies, obtaining expressions for the energy shifts that resemble our
expressions for the binding energies. However, the results differ. In particular, their equations
for the energy corrections are only valid as long as the renormalized excitation energies are not
too close to the gap edge, thus the low-T" asymptotics in the YSR regime cannot be described
due to logarithmic divergences, in contrast to the variational method that becomes exact for
small T

On the other hand, the method of Meng et al. has been found to match rather well the NRG
results for the experimentally relevant intermediate parameter range (I', U and A of compara-
ble magnitude). It is thus of some interest to determine the range of validity of the variational
method. In Fig. 14 we plot the relative error of the singlet energy as a function of 6 and T', tak-
ing the NRG results as the reference. The I'-dependence is converted to the excitation energy
(Es — Ep)/A. We observe that for low I' (corresponding to Eg — E, = min{U/2, A}) the error
is indeed vanishing. In the range E5 ~ Ej, in vicinity of the singlet-doublet quantum phase
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Figure 14: Relative error in the singlet state energy, AFEy;,4, vs. 6 and I'. On the
vertical axis, T is rescaled in terms of the excitation energy Es—Ep, in order to indicate
the position of the subgap excitation peak within the gap. The 5% error is shown with
the red contour.

transition, the errors are typically in the 10% range and they grow somewhat larger deeper in
the YSR regime. We can therefore state that the methods are complementary: they both pro-
vide reliable results in the intermediate-couple regime, but in addition the variational method
also describes well the weak-coupling regime, while the method of Ref. [6] also captures the
strong-coupling regime beyond the singlet-doublet transition line.

In recent years, there have also been several developments that aim to provide an accurate
description of the full impurity problem in terms of a small number of orbitals in a controlled
way. One approach is to parametrize the bath hybridisation function in terms of multiple rep-
resentative proximitized orbitals [37]. Increasing the number of orbitals leads to an improved
level of approximation. Another approach (that remains to be generalized to the supercon-
ducting case) is that of natural orbitals [34], where the optimal (“active”) set of orbitals is
constructed based on the eigenstates of the one-particle density matrix. Such approaches are
expected to approximately reproduce the singular behavior at U = 2A if a sufficient number
of orbitals is used, although perhaps at large computational cost.

9 Conclusion

We have proposed variational wavefunctions for the lowest-lying eigenstates of the single-
impurity Anderson model coupled to a superconducting bath. The key advantage of the vari-
ational solution is its ability to correctly include the continuum effects and the possibility of
obtaining closed-form asymptotic expressions for the eigenvalues. This capability has allowed
us to study the cross-over between the ABS and the YSR regimes of the excited singlet state,
the non-analytical point at (U = 2A,T — 0) and the resulting singular behavior in an extended
region of the parameter space. We discovered that in this region the wavefunction is an equal-
superposition state where the local charge state on the impurity state is maximally fluctuating.
This is the result of band-edge singularity physics, leading to strong mixing between ABS-type
and YSR-type terms. Given that the parameter range U/2 ~ A can be accessed in hybrid
semi-super quantum devices, these platforms could serve as a testing ground to probe the
predictions in full detail, e.g. using high-precision microwave spectroscopy [38].
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This approach could be fairly easily extended in different ways, for example to the general
case without the particle-hole symmetric, to a two-lead situation with a finite BCS phase bias
(i.e., a quantum-dot Josephson junction problem), and to the presence of magnetic field (spin-
splitting in the doublet state). It should also be possible to extend the method to multi-impurity
and multi-orbital problems.
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A Contributions to the singlet state energy

The expectation value of the Hamiltonian in the singlet-state Ansatz from Eq. (16) reads:
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Figure 15: Contributions to the singlet binding energy in the YSR regime, 6 = 0.05.
We plot the absolute values of the different contributions to Ep;q(T) = A— (Y |H|Y).
The line with markers corresponds to the dominant exchange singlet (a term),
A — (Y3|H|p5). The thinner colored full lines correspond to other diagonal terms,
(y;|H|y;), while the dashed lines correspond to the out-of-diagonal contributions,
(v;|Hp;) with i # j. Finally, the black line is the total binding energy.
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The key role of the two-quasiparticle states in the YSR regime is further established by
considering the different contributions from Eq. (A.1). We plot those in Fig. 15 for the case
of 8 > 0. More specifically, we show the contributions to the binding energy Fy;,q, plotting
their absolute values on the log-log scale in order to better reveal their magnitudes in the
asymptotic regime. The dominant (linear in I') contribution to the binding energy is due to
the hybidization with the two-quasiparticle states (dashed colored lines). This is facilitated
by the lower energy of the two-quasiparticle states as opposed to the local singlet states (a;-
type states), due to A < U/2 in the YSR regime. This explains why the two-quasiparticle terms
must be included in the Ansatz, even if their total weight in the full wavefunction is very small.
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