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An electron tunneling across a junction integrated into an electric circuit can generate an excitation in the
photonic field (electromagnetic environment) and lose energy in the process. Such inelastic tunneling of particles
is commonly described using the P(E ) theory. In the conventional approach to this theory, the tunneling rate
and the electric current through the junction are derived using Fermi’s golden rule and by averaging over the
environmental photonic degrees of freedom. In this work, we address the same problem of inelastic tunneling
due to photonic environment in Lindbladian formalism and we present how the photonic degrees of freedom
are traced out in the quantum master equation approach. The resulting quantum master equation is parametrized
by the same P(E ) function and enables us to obtain not only the electric current but various other quantities,
for instance, the heat current, in a systematic and convenient way. We also demonstrate that the Lindbladian
formalism provides a comprehensive description of Bogoliubov quasiparticle tunneling through superconducting
junctions and that it properly accounts for the coherence factors. The coherence factors become important if the
normal-state density of states is particle-hole asymmetric.
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I. INTRODUCTION

Tunneling is one of the most peculiar quantum phenomena.
In contrast to classical behavior, quantum transmission is also
possible through potential barriers exceeding the total energy
of the particle. Quantum tunneling has attracted much interest
due to the wide range of applications including superconduct-
ing quantum interference devices [1,2], scanning tunneling
microscopy [3–7], atomic scale devices [8–10], quantum dots
[11–13], quantum optical devices [14], and resonant tunneling
diodes [15,16].

In most situations, the tunneling event can be considered
a closed, i.e., unitary, process in the sense that the particle
does not interact with the environment. In some experiments
[6,17–20], however, the coupling to the electromagnetic en-
vironment significantly influences the transport properties of
charged particles. The electromagnetic field arises from the
electric circuit in which the junction is embedded and typi-
cally plays an important role in junctions with low capacity
(large charging energy). The effect of the coupling between
a tunneling particle and the quantized electromagnetic (pho-
tonic) bath is conventionally described by the P(E ) theory
[21–25]. The theory is based on Fermi’s golden rule describ-
ing the transmission probability rate between an initial and
a final state with equal energies. By taking into account the
energy of both the tunneling particles and the photons and by
averaging over the photonic degrees of freedom, one can de-
rive an analytical expression for the I (V ) characteristics. The
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key quantity appearing in the formula is the P(E ) function,
which describes the probability that the tunneling particle
emits a photon of energy E to the environment.

Another very commonly used technique to describe the
system-bath interaction is the Lindbladian formalism [26–31],
which appears quite different in form and spirit: While the
P(E ) theory describes inelastic tunneling of particles, the
more general Lindblad master equation describes the dynam-
ics of open quantum systems. Tunneling phenomena have
been extensively studied within the framework of quantum
master equations [32–36]. The typical approach involves trac-
ing out electronic degrees of freedom of the leads and the
master equation is formulated for the degrees of freedom of
an embedded system, such as a quantum dot.

In this paper we present a different kind of Lindbladian
approach. We integrate out only the photonic degrees of free-
dom, but keep all electronic degrees of freedom (including
those in the leads) as system variables. We demonstrate how
the resulting Lindblad equation is used to calculate physical
observables. We emphasize that the Lindbladian approach
does not supersede the P(E ) approach; the aim of the present
work is rather to compare the conventional P(E ) theory to
the Lindbladian approach and to demonstrate some bene-
fits of the latter. In particular, we compare the assumptions
behind the conventional Fermi golden rule and the Lindbla-
dian approach. The relation between Fermi’s golden rule and
classical Markovian master equations has been previously
studied in the strict limit of infinitesimally small coupling in
Ref. [37]. In this work we investigate what assumptions apply
for small but finite coupling and show that these are essentially
the same in both approaches. We believe, however, that the
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FIG. 1. Junction embedded in an electric circuit. The straight
orange arrows indicate the possible tunneling processes through the
insulating layer (light gray area between the leads). On the two
sides of the junction, the left and the right leads are characterized
by the energy spectra εL (k) and εR(q) and the chemical poten-
tials of electrons, μL/R. The electric circuit is characterized by the
impedance of Z (ω), the bias voltage is V , and the junction itself has a
capacitance C.

Lindbladian approach has one significant technical advantage:
It provides an algorithmic procedure to obtain various quan-
tities related to tunnel phenomena without the necessity of
introducing further assumptions. This is demonstrated by con-
sidering the problem of Bogoliubov quasiparticle tunneling
through superconducting junctions.

The paper is structured as follows. After defining the prob-
lem in Sec. II, in Sec. III we review the main steps of the
conventional approach by focusing on the approximations
implied in Fermi’s golden rule. These approximations are
compared to the assumptions made during the derivation of
the Lindbladian equation in Sec. IV. In Sec. V the electric
and heat currents are calculated using the Lindbladian frame-
work. In Sec. VI we demonstrate how to apply the formalism
to quasiparticle tunneling through superconducting junctions.
In Appendix A we provide details on the calculation of the
dissipated heat. In Appendix B we present the formalism for
tracking the number of electrons in superconducting BCS
states.

II. PROBLEM STATEMENT

The system of interest is the tunnel junction between two
leads as shown in Fig. 1. The Hamiltonian of the system is
given by

H = HB + H0 + HT , (1)

where HB and HT are the Hamiltonians describing the electro-
magnetic bath and the tunneling, while

H0 =
∑
kσ

εL(k)c+
Lkσ cLkσ +

∑
qσ

εR(q)c+
Rqσ cRqσ (2)

describes the electrons of the left (L) and the right (R) leads.
Here cLkσ and cRqσ are the annihilation operators of electrons
with wave number k/q and spin σ . The dispersions εL(k) and
εR(q) describe the energy spectra of the metallic leads and will
be kept general for most of the calculations.

The leads are coupled to a thermal bath with temperature
T and particle reservoirs setting the chemical potentials to
μL and μR such that μL − μR = eV , with e the charge of the
electron and V the bias voltage applied in the electric circuit.
The tunneling through the junction is described by

HT =
∑
kqσ

(Tkqc+
Rqσ cLkσ e−iϕ + H.c.), (3)

where e−iϕ is a charge displacement operator acting on the
photonic field. From the circuit point of view, the junction is a
capacitor. The operator e−iϕ shifts the charge on the capacitor
by the unit charge e [21,22,24]. The tunneling amplitudes Tkq

include the factor of 1/
√

NLNR, where NL and NR designate
the number of momentum modes in the left and right leads,
respectively.

The term HB describes the electromagnetic field of the cir-
cuit, which depends on the actual circuit in which the junction
is embedded. In the forthcoming discussion, it is assumed
that the environment is in thermal equilibrium with the same
temperature T as the thermal bath of the leads.

III. FERMI’S GOLDEN RULE APPROACH

We revisit the conventional derivation of the P(E ) theory
for a single junction [21]. We will particularly focus on the
approximations made in the derivation. These will later be
compared to those of the Lindbladian approach.

The P(E ) approach is based upon Fermi’s golden rule,
which is used to calculate the transmission rate. By using
first-order perturbation theory, the transmission from the left
lead state with energy εL(k) to the right lead state with energy
εR(q) is characterized by the probability of

pkσ,B→qσB′ (t ) = |〈qσ, B′|HT |kσ, B〉|2
h̄2

×
∣∣∣∣
∫ t

0
e(i/h̄)[εL (k)+EB−εR (q)−EB′ ]t ′

dt ′
∣∣∣∣
2

, (4)

where B and B′ denote the bath (photonic) degrees of freedom.
In order to compute the total probability of the transition
kσ → qσ , one has to sum over the bath degrees of freedom

pkσ→qσ (t ) =
∑
BB′

ρB pkσ,B→qσ,B′

= |Tkq|2
h̄2

∫ t

0
dt1

∫ t

0
dt2e(i/h̄)[εL (k)−εR (q)](t1−t2 )

× P̃(t1 − t2), (5)

where ρB is the probability that the photonic bath is in the state
B and

P̃(t ) = TrB(ρ̂Beiϕ(t )e−iϕ(0) ) (6)

is the bath correlation function, with ρ̂B the density matrix
of the electromagnetic environment. It is assumed that ρ̂B

describes a thermal equilibrium state with temperature T .
In reality, the state of the environment is modified by the
coupling, but since the transition probabilities are already in
second order in the tunneling, these modifications result in
higher-order corrections only. The bath correlation function
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P̃(t ) can be characterized by several timescales, the longest of
which will be denoted by τB.

By substituting the Fourier transform of the bath correla-
tion function,

P(E ) = 1

2π h̄

∫ ∞

−∞
dt e(i/h̄)Et Tr(ρ̂Beiϕ(t )e−iϕ(0) ), (7)

and integrating over the variables t1 and t2, the transmission
probability is rewritten as

pkσ→qσ (t )

= |Tkq|2
h̄2

∫ ∞

−∞
dE P(E )F

(
εL(k) − εR(q) − E

h̄
, t

)
, (8)

where

F (ω, t ) = sin2
(

ωt
2

)
(

ω
2

)2 . (9)

Note that F (ω, t ) is a sharp function around ω = 0 if t is
large enough since it has its major contribution in the range
of (− 2π

t ; 2π
t ). If the size of this interval is much smaller than

the narrowest energy interval on which P(E ) changes signif-
icantly in the vicinity of εL(k) − εR(q), the function F (ω, t )
can be replaced by 2πtδ(ω), leading to what is effectively
Fermi’s golden rule. The narrowest such energy interval is
determined by the longest characteristic time scale τB, leading
to the condition 2π

t � 1
τB

or, dropping the factor of 2π , to

τB � t . (10)

If the condition is fulfilled, the transmission probability is
obtained as

pkσ→qσ (t ) = t
2π |Tkq|2

h̄
P(εL(k) − εR(q)). (11)

The probability is valid if it does not reach too high values. By

using the notation Rkq = 2π |Tkq|2
h̄ P(εL(k) − εR(q)), the condi-

tion for the validity of the long-time limit of Fermi’s golden
rule is given by

τB � t � R−1
kq . (12)

Such a condition can be fulfilled by some range of t if

τB � R−1
kq (13)

holds. This means that Fermi’s golden rule is valid if the bath
relaxation time is much shorter than the inverse transition rate.

Note that this condition is in spirit the same as presented,
e.g., in Ref. [38], but modified due to the averaging over the
bath degrees of freedom. If the conditions from Eq. (12) are
fulfilled, the transmission rate for the kσ → qσ transition is
finally obtained as

wkσ→qσ = ∂t pkσ→qσ (t ) = 2π |Tkq|2
h̄

P(εL(k) − εR(q)). (14)

The overall transition rate from left to right is obtained as a
sum of the products of the elementary transition probabilities
wkσ→qσ and occupation probabilities. Since the transmission
rate is already in leading order in the tunneling amplitude, the
occupation probabilities in the leads can be assumed to equal
their equilibrium value corresponding to the temperature T
and chemical potentials μL and μR.

Hence, the overall tunneling rate is given by

−→
� = 2π

h̄

∑
kqσ

|Tkq|2P(εL(k) − εR(q)) fL(1 − fR), (15)

where we use the shorthand notation fL = f [εL(k) − μL]
and fR = f [εR(q) − μR], with f (ξ ) = 1/(eβξ + 1) the Fermi
function and β = 1/kBT the inverse temperature. The P(E )
function is related to the charge relaxation through the elec-
tric circuit and can be computed from the properties of the
particular circuit [21]. From the electron point of view, the
function P(E ) represents the probability that the tunneling
electron emits a photon with energy E to the environment (for
E > 0) or absorb it (for E < 0).

Similarly to Eq. (15), the total tunneling rate from right
to left can also be obtained and the electric current is finally
calculated as I = e(

−→
� − ←−

� ), as presented in Ref. [21].

IV. LINDBLADIAN APPROACH

In this section we present an alternative theoretical descrip-
tion of the coupling between the tunneling electrons and the
electromagnetic field of the circuit. We consider the latter
as an energy reservoir for the electrons and follow the stan-
dard procedure of the microscopic derivation of the Lindblad
equation [28]. One goal of this section is to compare the
approximations of Fermi’s golden rule to the Born-Markovian
approximation used for the Lindblad equation. The deriva-
tion presented here involves tracing out photonic degrees of
freedom only and keeping all electronic degrees of freedom
as system variables, in contrast to many previous theoretical
works [32–36].

In the standard procedure [28], the time evolution is de-
scribed within the interaction picture with H0 + HB being the
unperturbed Hamiltonian. The von Neumann equation can be
reformulated as

∂tρ = − i

h̄
[HT I (t ), ρ(0)]

− 1

h̄2

∫ t

0
dt ′[HT I (t ), [HT I (t ′), ρ(t ′)]], (16)

where ρ(t ) is the density matrix of the whole system including
both the electronic and photonic degrees of freedom. Square
brackets denote the usual commutators and ρ(0) stands for the
initial density matrix. In addition, HT I (t ) denotes the tunnel-
ing Hamiltonian in the interaction picture.

To reduce the Hilbert space to the electronic degrees of
freedom, we trace out the environmental degrees of free-
dom on both sides of the equation. The partial trace leads
to ρS (t ) = TrB[ρ(t )] describing solely the electronic de-
grees of freedom. For the initial condition, we assume that
TrB{[HT I (t ), ρ(0)]} = 0. In our specific case of a single junc-
tion, this assumption traces back to Tr[ρB(0)e−iϕ] = 0, which
holds true if ρB(0) describes the thermal equilibrium state of
the bath.

Furthermore, it is also assumed that the coupling between
the system and the environment is weak and that the system
affects the state of the reservoir only negligibly. Hence, on
the right-hand side of the equation, which is already second
order in the coupling, we can assume that ρ(t ) = ρS (t ) ⊗ ρB,
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TABLE I. Jump processes in the case of normal leads.

Ap Description Frequency

Tkqc+
qσ ckσ L → R [ j(p) = +1] h̄ωp = εL (k) − εR(q)

T ∗
kqc+

kσ cqσ R → L [ j(p) = −1] h̄ωp = εR(q) − εL (k)

where ρB is the bath density operator in thermal equilibrium
with the temperature T . Similarly to the Fermi golden rule
approach, the effects of the coupling on the bath would result
in higher-order corrections only. This assumption is called the
Born approximation.

In the standard procedure, the next assumption is that the
environment relaxes much faster than the typical timescales
of the system evolution. This Markovian approximation can
also be rephrased as a statement that the time evolution of the
system has no memory effects. Technically, the time argument
t ′ of the density matrix ρS (t ′) is replaced by t , indicating that
the system density matrix does not change essentially while
the bath relaxes. In addition to the change of argument, we
also set the lower limit of the integration in Eq. (16) to −∞
in accordance with the idea that no memory effects from
the initial state are kept. These technical steps lead to the
same result as temporal coarse graining [39,40] with the time
interval which is much longer than the bath relaxation time τB

and much shorter than the typical timescale of changes in the
system. The physical meaning of the Markovian assumption
is that after a tunneling event (also referred to as a jump pro-
cess in the Lindbladian language) the bath achieves complete
relaxation before another event occurs. This is essentially the
same assumption as the long-time limit applied in the Fermi
golden rule approach as formulated in Eqs. (12) and (13).

The standard form of the resulting equation is usually
achieved by changing the integral variable from t ′ to t − t ′,
leading to

∂tρS (t ) = 1

h̄2

∫ ∞

0
dt ′TrB[HT I (t − t ′)ρS (t )ρBHT I (t )

−HT I (t )HT I (t − t ′)ρS (t )ρB + H.c.]. (17)

Now we substitute into this equation the tunneling Hamilto-
nian, which is given by

HT I (t ) =
∑

p

Ap(t )e−i j(p)ϕ(t ) (18)

in the interaction picture. Here we have defined the process
operators Ap(t ) = Ape−iωpt as shown in Table I. For the jump
processes we have introduced the composite process index
p = {k, q, σ, j}. The operator Ap describes a tunneling pro-
cess between a left lead state with momentum k and a right
lead state with momentum q and spin σ , and j is the direction
of the tunneling. If the tunneling process occurs from left
to right, j = 1, and j = −1 for the opposite direction. In
the exponent of Eq. (18), j(p) indicates the direction of the
process p. In the following, we will use j and j′ instead of
j(p) and j(p′) for the sake of brevity.

After substituting into Eq. (17) and carrying out the integra-
tion over t ′, we obtain

∂tρS (t ) = 1

h̄

∑
pp′

{�̃ j j′ (ωp′ )ei(ωp−ω′
p)t [Ap′ρS (t )A+

p

− A+
p Ap′ρS (t )] + H.c.}, (19)

where the bath correlation function is defined as

�̃ j j′ (ω) = 1

h̄

∫ ∞

0
dt TrB(ρBei jϕ(t )e−i j′ϕ(0) )eiωt . (20)

In the standard derivation, the exponential factors ei(ωp−ωp′ )t

are assumed to describe very fast oscillations. By applying
the rotating-wave approximation, we neglect terms where the
processes p and p′ have different frequencies and keep only
terms with ωp = ω′

p. In some situations, this approximation
does not hold true and one has to handle the nonsecular
Lindblad equation with time-dependent coefficients [41,42].
In the case of tunneling through the single junction, the terms
with ωp �= ωp′ do not contribute to the electric current or to the
heat current; hence they would play no role even if retained.

By applying the rotating-wave approximation and returning
to the Schrödinger picture representation, we obtain

∂tρS (t ) = − i

h̄
[H0 + HLS, ρS (t )]

+ 1

h̄

∑
pp′

ωp=ω′
p

γ j j′ (ωp)

[
Ap′ρS (t )A+

p − 1

2
{A+

p Ap′ , ρS (t )}
]
,

(21)

which is the Lindblad equation for the tunneling electrons.
In this equation, {, } denotes anticommutation. We have also
defined

γ j j′ (ω) = �̃ j j′ (ω) + �̃ j′ j (ω)∗

= 1

h̄

∫ ∞

−∞
dt TrB(ρBei jϕ(t )e−i j′ϕ(0) )eiωt , (22)

which, apart from a factor of 2π , is the same as the P(E )
function from Eq. (7) if j = j′, with E = h̄ω. Furthermore,
we define the Lamb shift Hamiltonian as

HLS =
∑
pp′

ωp=ω′
p

1

2i
[�̃ j j′ (ω) − �̃ j′ j (ω)∗]A+

p Ap′ . (23)

So far, we have derived the Lindblad equation for the tun-
neling particles, which is the full dynamical equation for the
density matrix.

V. ELECTRIC CURRENT

In this section we calculate the current flowing through
the junction based on the Lindblad equation (21). Since the
Lindbladian contains only particle operators, the current must
also be expressed in terms of particle operators rather than
circuit variables. We start with the expectation value

QL(t ) = Tr[Q̂LρS (t )], (24)
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where

Q̂L = e
∑
kσ

c+
Lkσ cLkσ (25)

is the operator for the total charge in the left lead. The ex-
pectation value of the net current flowing from left to right is
calculated as

I = −dQL

dt
= −Tr[Q̂L∂tρS (t )]. (26)

We substitute the right-hand side of the Lindblad equation into
∂tρS (t ) and make use of the cyclic properties of the trace and
the relation [H0 + HLS, c+

Lkσ
cLkσ ] = 0, which leads to

I = −1

h̄

∑
pp′

ωp=ω′
p

γ j j′ (ωp)Tr

[
ρS (t )

(
A+

p Q̂LAp′ − 1

2
{A+

p Ap′ , Q̂L}
)]

.

(27)

Due to A+
p Ap′ ∼ T ∗

kqTk′q′ , the current is already in the order
of |T |2 in the tunneling amplitude, which is the leading order
within the Born approximation. Therefore, we can assume
that in the steady state the leads achieve thermal equilib-
rium ρS (t → ∞) = ρth. We note that this steady state is not
reached by the dissipation described by the jump processes in
Eq. (21). In reality, the leads are coupled to other reservoirs:
Phonons act as a heat bath and wires act as charge reser-
voirs. The effects of these are expected to be much stronger
than the dissipation generated by the tunneling. They thus
drive the leads to the thermal equilibrium state with a well-
defined temperature and chemical potential.

In thermal equilibrium, Tr(ρthc+
Lkσ

cLkσ ) = fL and
Tr(ρthc+

Rqσ cRqσ ) = fR. Deviations from these values occur
only in higher orders in |T |2. When evaluating the trace in
Eq. (27), terms like Tr(ρthA+

p Ap′ ) must be calculated. Due to
the thermal equilibrium, only the p = p′ terms contribute and
we obtain

I = e

h̄

∑
kqσ

|Tkq|2
[
γ++

(
εL(k) − εR(q)

h̄

)
fL(1 − fR)

−γ−−

(
εR(q) − εL(k)

h̄

)
fR(1 − fL )

]
, (28)

which is the same as the current obtained from Fermi’s golden
rule by evaluating I = e(

−→
� − ←−

� ) from Eq. (15). The corre-
spondence is established by

γ++

(
E

h̄

)
= γ−−

(
E

h̄

)
= 2πP(E ), (29)

which directly connects the jump coefficients of the Lindbla-
dian with the P(E ) distribution function.

If Tkq does not depend on the wave number and the density
of states on each lead is also approximated by a constant DL

or DR, the current is calculated as

I = 1

eRT

∫
dεL

∫
dεR

× {P(εL − εR) f (εL − μL )[1 − f (εR − μR)]

− P(εR − εL ) f (εR − μR)[1 − f (εL − μL )]}, (30)

where

RT = h̄

e2

1

4πDLDR|T |2 (31)

is the Ohmic resistance of the junction. Equation (30) is iden-
tical to Eq. (51) of Ref. [21].

Based on the Lindblad equation, the heat currents can also
be computed by taking the time derivative of the expectation
value of the total energy in the left (right) lead HL (HR) (for
details see Appendix A). Due to the energy exchange between
the electrons and the photonic field, the heat current leaving
the left lead PL differs from the heat current arriving to the
right lead PR. The difference is the dissipated heat Pdiss =
PL − PR, which is obtained from the Lindblad equation as

Pdiss = 2π

h̄

∑
kqσ

(εk − εq)|Tkq|2

× [P(εk − εq) fL(1 − fR) − P(εq − εk )(1 − fL ) fR],

(32)

which is in accordance with Refs. [43–45]. This further con-
firms the validity of the Lindbladian formalism based on
Eq. (21).

In this section we have presented the relation between the
conventional approach to the P(E ) theory and the Lindbla-
dian formalism based on tracing out the photonic degrees
of freedom. We have seen that the assumptions of Fermi’s
golden rule are essentially the same as the Born-Markovian
approximation used for the Lindblad equation. Specifically,
both approaches are valid if the coupling between the system
and the bath is weak and the results are given up to leading
order only. Furthermore, both approaches assume that the
tunneling events are independent from each other and that the
reservoir completely relaxes between consecutive events.

VI. INELASTIC QUASIPARTICLE TUNNELING
THROUGH JOSEPHSON JUNCTIONS

We apply the Lindbladian formalism to the quasiparti-
cle tunneling between superconducting leads. Note that this
phenomenon is distinct from the tunneling of Cooper pairs
[21,46], which is not covered in this section. In Ref. [21] the
quasiparticle tunneling is handled such that the only differ-
ence to the normal leads comes from the difference in the
density of states of elementary excitations. Reference [24],
however, claims that, due to the fact that superconducting
elementary excitations are linear superpositions of particles
and holes with suitable energy-dependent coefficients, the cor-
responding coherence factors appear in the expressions for the
tunneling rates. Here we show that by taking into account the
Cooper pair counting in the Bogoliubov operators, the results
of Ref. [21] are recovered in special cases but coherence
factors appear in more general situations.

Let us start with the Hamiltonian of the superconduct-
ing (left) lead, which is obtained within the mean-field
approximation as

HL − μLN̂L =
∑
kσ

EL(k)d+
Lkσ dLkσ , (33)
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TABLE II. Jump processes in the case of superconducting leads. Here C denotes the Cooper pair transitions. C: − indicates no Cooper pair
transition.

Process Ap Description Frequency

1+ Tkqukuqd+
qσ dkσ L → R, C: − h̄ωp = Ek + eV − Eq

2+ −Tkqv
∗
qvkS+

R SLd+
kσ dqσ R → L, C: L → R h̄ωp = Eq + eV − Ek

3+ Tkqv
∗
q ukS+

R dqσ̄ dkσ LR → ∅, C: ∅ → R h̄ωp = Ek + Eq + eV

4+ TkquqvkSLd+
qσ d+

kσ̄ ∅ → LR, C: L → ∅ h̄ωp = eV − Ek − Eq

1− T ∗
kqukuqd+

kσ dqσ R → L, C: − h̄ωp = Eq − eV − Ek

2− −T ∗
kqvqv

∗
k S+

L SRd+
qσ dkσ L → R, C: R → L h̄ωp = Ek − eV − Eq

3− T ∗
kqukvqSRd+

kσ d+
qσ̄ ∅ → LR, C: R → ∅ h̄ωp = −eV − Ek − Eq

4− T ∗
kqv

∗
k uqS+

L dkσ̄ dqσ LR → ∅, C: ∅ → L h̄ωp = Ek + Eq − eV

where N̂L is the total number of particles and EL(k) =√
ξL(k)2 + |�L|2 is the energy spectrum, with �L the super-

conducting gap and ξL(k) = εL(k) − μL. In the formula, dLkσ

is the annihilation operator of the Bogoliubov quasiparticles.
Following Refs. [47–49], the annihilation operators are de-
fined as

dLkσ = ukcLk↑ − σvkSLc+
L,−kσ̄ , (34)

where we use the convention that the value of σ is +1 for spin
up and −1 for spin down and σ̄ denotes the opposite of spin
σ . Furthermore,

uk = 1√
2

√
1 + ξL(k)

EL(k)
, vk = eiφ

√
2

√
1 − ξL(k)

EL(k)
, (35)

where φ is the phase of �L. The nonstandard feature of
Eq. (34) is the inclusion of the operator SL, which annihilates
a Cooper pair from the left lead. Technically, we consider that
SL acts on an auxiliary Hilbert space of Cooper pairs. The
basis elements of this Hilbert space are |ML〉 describing a state
with ML Cooper pairs and fulfilling SL|ML〉 = |ML − 1〉. The

overall state of the superconducting lead takes the form of a
tensor product |electrons〉 ⊗ |ML〉.

As pointed out in Refs. [47–49], the application of SL

ensures proper accounting for the electric charge, which is
necessary for the discussion of tunneling problems. Indeed,
as shown in Appendix B, the annihilation operators fulfill the
relation

[N̂L, dLkσ ] = −dLkσ (36)

if the total number of particles is defined as

N̂L =
∑
kσ

c+
Lkσ cLkσ + 2

∑
ML

ML|ML〉〈ML|, (37)

where the factor 2 stems from the fact that Cooper pairs carry
a charge of 2e.

For the right lead, similar expressions can be derived and
with the Hamiltonian HR, the total Hamiltonian of the leads
is given as H0 = HL + HR. Using the Bogoliubov transforma-
tion (34), the tunneling Hamiltonian of (3) is rewritten as

HT =
∑
kqσ

[Tkqe−iϕ (ukuqd+
qσ dkσ − v∗

qvkS+
R SLd+

kσ dqσ + σv∗
qukS+

R dqσ̄ dkσ + σuqvkSLd+
qσ d+

kσ̄ )

+ T ∗
kqeiϕ (ukuqd+

kσ dqσ − vqv
∗
k S+

L SRd+
qσ dkσ + σv∗

k uqS+
L dkσ̄ dqσ + σukvqSRd+

kσ d+
qσ̄ )], (38)

from which the jump processes are identified as shown in Table II in accordance with Ref. [48]. In the table, the frequencies are
determined based on the energy difference between the initial and final states of the process. For the energy, we consider the
eigenvalues of HL and HR and not HL − μLN̂L or HR − μRN̂R, that is, we express HL from Eq. (33) and obtain HR similarly. This
procedure gives rise to the terms μL − μR = eV in the frequencies of the jump processes.

It is worth noting the critical importance of the SL,R operators. For example, the processes 1+ and 2− both describe a
quasiparticle tunneling from left to right. However, in the process 2−, it is accompanied by a hopping of a Cooper pair from
right to left producing a net charge transfer from right to left.

To calculate the electric current through the junction, we follow the same procedure as presented in Sec. V. The total charge
of the left lead is given by Q̂L = eN̂L with the total number of particles defined in Eq. (37). Formally, we obtain the same result
as Eq. (27), but the sum over the different processes includes now all processes of Table II. We assume again that the density
matrix ρS (t → ∞) describes a thermal equilibrium state of the superconducting leads. As a result, only the diagonal terms
p = p′ contribute to the sum in Eq. (27), leading to

I = 2πe

h̄

∑
kqσ

|Tkq|2
{
u2

ku2
q fL(1 − fR)P(EL(k) − ER(q) + eV ) + |vk|2|vq|2 fR(1 − fL )P(ER(q) − EL(k) + eV )

+ u2
k |vq|2 fL fRP(EL(k) + ER(q) + eV ) + u2

q|vk|2(1 − fL )(1 − fR)P(−EL(k) − ER(q) + eV )

012224-6
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− u2
ku2

q(1 − fL ) fRP(ER(q) − eV − EL(k)) − |vk|2|vq|2 fL(1 − fR)P(EL(k) − eV − ER(q))

− |vq|2u2
k (1 − fR)(1 − fL )P(−eV − EL(k) − ER(q)) − u2

q|vk|2 fL fRP(EL(k) + ER(q) − eV )
}
, (39)

where fL = f [EL(k)] and fR = f [ER(q)].
In the case when both |Tkq|2 and the density of states of ξL/R are independent of the wave number and energy, we obtain

I = 1

eRT

∫ ∞

−∞
dξL

∫ ∞

−∞
dξR

[
u2

ku2
q fL(1 − fR)P(EL − ER + eV ) + |vk|2|vq|2 fR(1 − fL )P(ER − EL + eV )

+ u2
k |vq|2 fL fRP(EL + ER + eV ) + u2

q|vk|2(1 − fL )(1 − fR)P(−EL − ER + eV )

− u2
ku2

q(1 − fL ) fRP(ER − eV − EL ) − |vk|2|vq|2 fL(1 − fR)P(EL − eV − ER)

− |vq|2u2
k (1 − fR)(1 − fL )P(−eV − EL − ER) − u2

q|vk|2 fL fRP(EL + ER − eV )
]
, (40)

where EL/R =
√

ξ 2
L/R + |�L/R|2 and RT is the resistance given

in Eq. (31). One can observe that only the coherence factors,
e.g., u2

k |vq|2, depend on the sign of ξL/R. We analyze all four
sectors of the (ξL, ξR) plane and sum up with respect to the
sign of ξL and ξR. By using the functions nL/R(E ) = �(|E | −
|�L/R|)|E |/√E2 − |�L/R|2 with the Heaviside function �(x),
we obtain

I = 1

eRT

∫ ∞

−∞
dE

∫ ∞

−∞
dE ′nL(E )nR(E ′)

× { f (E )[1 − f (E ′)]P(E − E ′ + eV )

× f (E ′)[1 − f (E )]P(E ′ − E − eV )}, (41)

which is the same as Eq. (153) in Ref. [21]. Note that no
coherence factors appear in this expression.

Let us now study the case of nonconstant density of states
and assume a linear energy dependence in the vicinity of the
chemical potential:

DL(ξk ) = DL0(1 + sLξk ),

DR(ξq) = DR0(1 + sRξq). (42)

Note that such an energy dependence of D implies that
the particle-hole symmetry is broken in the superconducting
leads. By substituting the density of states into (39) and fol-
lowing the same procedure as previously presented for the
constant density case, we now obtain

I = 1

eRT

∫ ∞

−∞
dE

∫ ∞

−∞
dE ′nL(E )nR(E ′)

×
(

1 + sL
E2 − |�L|2

E

)(
1 + sR

E ′2 − |�R|2
E ′

)

× { f (E )[1 − f (E ′)]P(E − E ′ + eV )

× f (E ′)[1 − f (E )]P(E ′ − E − eV )}, (43)

where RT is defined as Eq. (31) but with DL/R0.
The integrals of Eq. (43) are evaluated numerically and the

results are shown with solid lines in Fig. 2 for an RLC circuit
environment where Q f = √

L/C/R = 0.25 and L = 4Ch̄2/e2

following Sec. 4.3 in Ref. [21]. The numerical calculations are
performed in two distinct cases. In the first (parity-symmetric)
case, the density of states behaves the same in both leads,
sL = sR = s, while in the second (parity-antisymmetric) case,

the slopes of the energy dependences have opposite signs
sL = −sR = s. The parity-antisymmetric case exhibits a more
significant s dependence.

At higher bias voltages, the I (V ) characteristic converges
to the curve corresponding to the case of no environment
and no superconductivity. For sL,R = 0, this reference I (V )
function is linear describing Ohmic behavior. For nonzero
sL,R, the reference current is calculated as

I0(V ) = V

RT

(
1 + (sR − sL )

eV

2

− sLsR

6
[(eV )2 − 2π2(kBT )2]

)
, (44)

which is plotted with dashed lines in Fig. 2. Note that the
deviation of the I (V ) curves from the Ohmic behavior at high
voltages is not a consequence of the inelastic tunneling but
follows from the broken particle-hole symmetry.

FIG. 2. Plot of I (V ) characteristics for different types of density
of states. The case of a uniform density of states [blue (lightest
gray) solid line] is compared to the parity symmetric case sL = sR =
ssym = 0.05 [orange (medium gray) solid line], and to the parity
antisymmetric case sL = sR = sasym = 0.05 [green (dark gray) solid
line]. The dashed lines represent Eq. (44). For the plot, IC = EC/eRT

has been defined.
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The result of Eq. (43) demonstrates how the broken
particle-hole symmetry occurs in the I (V ) characteristics. The
coherence factors 1 + s E2−|�|2

E could be derived only by prop-
erly identifying the charge conserving jump processes within
the Lindbladian formalism.

VII. CONCLUSION

The P(E ) theory is the most commonly used approach to
explain the transport properties of ultrasmall tunnel junctions.
In this paper we showed that the conventional approach to
P(E ) theory, which is based on Fermi’s golden rule, relies
on essentially the same assumptions as the Born-Markovian
approximation of the Lindblad equation approach. The Lind-
bladian formalism presented here involves tracing out only
photonic degrees of freedom. This has to be contrasted with
the typical approaches in the literature where the leads are
treated as reservoirs. The main advantage of keeping all elec-
tronic degrees of freedom as system variables is that further
effects can be included in the model, such as additional dis-
sipative processes or elastic tunneling terms. Furthermore,
additional scattering processes could also be taken into con-
sideration. A particularly interesting situation could be to
consider an Anderson impurity at the edge of one or both leads
and study the interplay between the dissipation and the Kondo
effect.

We believe that our results extend the conventional P(E )
theory, open the route to more complex systems, and en-
able the calculation of more complicated observables. As a
demonstration, we have applied the formalism to inelastic
quasiparticle tunneling through superconducting junctions. It
has been shown that if the normal-state density of states of the
leads is flat (constant in energy), no coherence factors occur
in the I (V ) characteristics. For a nonconstant density of states
(i.e., broken particle-hole symmetry), however, the coherence
factors play an important role.
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APPENDIX A: DISSIPATED HEAT

The dissipated heat is a fundamentally important quan-
tity [50]. Furthermore, it can be used to characterize devices
through Joule spectrometry, e.g., in hybrid superconducting
devices [51]. In this Appendix we study the heat current
flowing through the junction with normal-state leads. The heat
transport has been broadly studied in the literature [43–45].
Here we demonstrate how these results can be recovered
within the Lindbladian formalism.

The total energy of the left lead is given by the operator
HL = ∑

kσ εkc+
Lkσ

cLkσ and its expectation value is given by

EL(t ) = Tr[HLρS (t )]. (A1)

The heat flow from the left lead is computed as

PL = −dEL

dt
= −Tr[HL∂tρS (t )]. (A2)

By substituting the right-hand side of the Lindblad equa-
tion and taking advantage of [H0 + HLS, HL] = 0, we obtain

PL = 2π

h̄

∑
kqσ

εk|Tkq|2[P(εk − εq) fL(1 − fR)

−P(εq − εk )(1 − fL ) fR], (A3)

where we again take into account that the leads are in thermal
equilibrium. A similar formula can be derived for the heat flow
to the right lead:

PR = 2π

h̄

∑
kqσ

εq|Tkq|2[P(εk − εq) fL(1 − fR)

−P(εq − εk )(1 − fL ) fR]. (A4)

In the absence of environmental effects, when P(E ) = δ(E ),
the two heat currents are the same PL = PR. In the presence
of the photonic bath, however, some part of the heat current
which leaves the left lead does not arrive on the right lead but
gets dissipated into the environment. The dissipated heat is
calculated as

Pdiss = PL − PR = 2π

h̄

∑
kqσ

(εk − εq)|Tkq|2

× [P(εk − εq) fL(1 − fR) − P(εq − εk )(1 − fL ) fR].
(A5)

By considering a constant density of states and tunneling
amplitude and taking the limits of an infinite system size and
infinitely large bandwidth, the sum is rewritten as

Pdiss = 1 − e−βeV

e2RT

∫ ∞

−∞
dE

EP(E )(E − eV )

eβ(E−eV ) − 1
. (A6)

In the formula, RT is the electric resistance of the junction as
given in Eq. (31).

The dissipated heat has been computed numerically for an
RLC environment (see Fig. 3). The circuits are distinguished
based on the quality factor defined as Q f = √

L/C/R fol-
lowing Ref. [21]. In each case, L = 4Ch̄2/e2 has also been
set. The quality factor indicates how pronounced the resonant
peaks are in the P(E ) function. For lower values of Q f , the
Ohmic resistance becomes dominant.

At low bias voltage, the dissipated heat has a rich structure
and depends strongly on the specific circuit. At high voltages,
however, the dissipated heat behaves as Pdiss ∼ V , which is
noticeably distinct from the quadratic behavior characteristic
of Ohmic resistances. This result is particularly interesting
since the I (V ) characteristics do exhibit the Ohmic behavior
in this regime I = V/RT . It can also be shown that in the large
bias voltage limit, the dissipated heat through the junction is
given by

Pdiss = ĒV

eRT
, (A7)

where Ē = ∫
dE EP(E ) is the average energy emission of a

tunneling particle.
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FIG. 3. Derivative of the dissipated power as a function of bias
voltage for three different values of the quality factor Qf = √

L/C/R
(numerical results). The inset shows the corresponding P(E ) func-
tions in units of E−1

C , where EC = e2/2C is the charging energy. The
temperature is T = 0.01EC/kB. The P(E ) curves are the same as in
Sec. 4.3 of Ref. [21]. For the plot, IC = EC/eRT has been defined.

We remark that the dissipated heat is not necessarily lost
on the Ohmic resistance of the electric circuit. It can be shown
that even in the case of a simple LC circuit, the dissipated heat
is nonzero. This can be explained by the fact that the photonic
environment with a well-defined temperature is, by definition,
coupled to a large heat bath and the dissipated heat can also
be lost through this coupling.

APPENDIX B: TRACKING THE NUMBER OF PARTICLES
IN SUPERCONDUCTING LEADS

When studying tunneling phenomena [47–49], it is ben-
eficial to introduce the Cooper pair operators S in the
annihilation operators of Bogoliubov quasiparticles. These
operators track the number of Cooper pairs forming the su-
perconducting condensate: S decreases that number by one
and S+ increases it by one. The annihilation operators of the
Bogoliubov quasiparticles are then given as

dkσ = ukckσ − σvkSc+
−kσ̄ , (B1)

where we use the convention that the value of σ is +1 for spin
up and −1 for spin down and σ̄ denotes the opposite of spin
σ . The coefficients are given by the standard expressions

uk = 1√
2

√
1 + ξk

Ek
,

vk = eiϕ

√
2

√
1 − ξk

Ek
, (B2)

with ξk = ε(k) − μ and Ek =
√

ξ 2
k + |�|2. The operator S

annihilates a Cooper pair from the system; hence, under the
action of dkσ the charge of the total system decreases by
exactly one unit. In this Appendix we consider only one lead
and we hence drop the lead index.

The inverse Bogoliubov transformation is given by

ckσ = ukdkσ + σvkSd+
−kσ̄ , (B3)

which is valid if SS+ = 1. This relation will be checked
later. An interesting property of Eq. (B1) is that it does not

diagonalize the BCS mean-field Hamiltonian in the standard
form

HBCS =
∑

k

ξk (c+
k↑ck↑ + c+

−k↓c−k↓) −
∑

k

(�c+
k↑c+

−k↓ + H.c.)

(B4)

because the terms of the type c+c+, which change the total
charge by 2e, cannot be expressed in terms of d+d , which
do not change the total charge. Instead, we have to revisit the
mean-field approximation applied to the original Hamiltonian

H =
∑

k

ξk (c+
k↑ck↑ + c+

−k↓c−k↓) − g

N

∑
kk′

c+
k↑c+

−k↓c−k′↓ck′↑.

(B5)

Let us insert an identity operator SS+ as

H =
∑

k

ξk (c+
k↑ck↑ + c+

−k↓c−k↓)

− g

N

∑
kk′

c+
k↑c+

−k↓SS+c−k′↓ck′↑ (B6)

and assume that the expectation value

� = g

N

∑
k

〈S+c−k↓ck↑〉 (B7)

is nonzero in the ordered phase. By performing the standard
steps of the mean-field approximation, we obtain

HMF − N |�|2
g

=
∑

k

ξk (c+
k↑ck↑ + c+

−k↓c−k↓) −
∑

k

(�c+
k↑c+

−k↓S + H.c.),

(B8)

which is readily diagonalized by the transformation (B1) re-
sulting in Eq. (33). It is remarkable that, in contrast to (B4),
the Hamiltonian of (B8) conserves the total charge because
the terms such as c+c+S describe the creation of two electrons
with the simultaneous annihilation of a Cooper pair. A similar
description was recently used in Ref. [46].

Technically, by this procedure we have introduced an aux-
iliary Hilbert space for the Cooper pairs which is separate
from the physical electron Hilbert space. This redundancy in
description serves to track the number of electrons, which is
important in discussing tunneling between multiple supercon-
ductors. The states of the system take the general form

|�〉 = |{ many body state of electrons}〉 ⊗ |M〉c, (B9)

where the last part |M〉c describes a state with M Cooper pairs.
In the auxiliary space, the basis vectors are |M〉c with integer
M ranging from 0 to infinity. The S operator acts as

S = I ⊗
∞∑

M=0

|M〉c〈M + 1|c, (B10)

from which SS+ = 1 also follows.
The ground state of the Hamiltonian in Eq. (B8) is

|g.s.〉 =
∏

k

(uk + vkSc+
k↑c+

−k↓)|0〉 ⊗ |M0〉c, (B11)
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where |0〉 is the vacuum (empty) state of electrons and M0 is
half the total number of electrons in the superconductor. Note
that the number of particles is the same in each term of the
ground state, Ne = 2M0. Based on the ground state, the gap
equation is derived as

� = g

2N

∑
k

�

Ek
, (B12)

which coincides with the one in the standard BCS theory
[49]. Finally, we express the operator for the total number of

particles by considering both the electron and the Cooper pair
contributions as

N̂ =
∑
kσ

c+
kσ ckσ + 2

∑
M

M|M〉〈M|, (B13)

which satisfies both [N̂, S] = −2S and [N̂, dkσ ] = −dkσ in
accordance with the physical intuition. Note that these
commutators are crucial to properly track the charges,
which is essential when studying transport properties of
superconducting junctions.
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