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We study an interacting quantum dot in contact with a superconducting island described by the Richardson
model with a Coulomb repulsion term controlling the number of electrons on the island. This Hamiltonian
admits a compact matrix-product-operator representation and can be efficiently and accurately solved using
the density-matrix renormalization group. We systematically explore the effects of the charging energy Ec. For
Ec comparable to the superconducting gap �, the subgap states are stabilized by the combination of Kondo
exchange coupling and charge redistribution driven by the Coulomb interaction. The subgap states exist for both
even and odd superconductor ground-state occupancy, but with very distinctive excitation spectra in each case.
The spectral peaks are not symmetric with respect to the chemical potential and may undergo discontinuous
changes as a function of gate voltages.
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The study of long-lived excited states inside the bulk
spectral gap of superconductors (“subgap states” for short),
induced by impurities and interfaces, drives the development
of technologically important quantum devices. For example,
the Yu-Shiba-Rusinov (YSR) states that result from the ex-
change interaction which binds a Bogoliubov quasiparticle at
the magnetic impurity site [1–4] are instrumental in realizing
topological superconductivity with Majorana edge modes [5].
The excellent understanding of YSR states rests on a theoret-
ical description based on the Anderson impurity model with a
superconducting (SC) bath described by the Bardeen-Cooper-
Schrieffer (BCS) mean-field Hamiltonian [6–9], which can be
tackled using modern impurity solvers [10–16].

A recent development involves devices with the SC ma-
terial epitaxially evaporated on the nanowire hosting the
impurity [quantum dot (QD)] [17,18]. The small SC is-
land in these devices has a considerable charging energy Ec

and strong even-odd occupancy effects [19–22] that require
an appropriate description [23–29]. This is similar to SC
metallic grains [30–34] described by the Richardson model,
a charge-conserving Hamiltonian with pairing between the
time-reversal-invariant pairs of states in the orbital basis,
which is the appropriate generalization of the BCS pairing
Hamiltonian to a situation with no translation invariance
[35,36]. For weak to moderate pairing and a dense set of
levels, the Richardson model is fully equivalent to a BCS
superconductor and has the same low-energy excitation spec-
trum, but it is more general: It also describes the transition to
a Bose-Einstein condensate for strong pairing, and it remains
applicable for a very small number of levels. Without the
impurity, the Richardson model can be expressed in terms
of hard-core bosons (paired electrons) and exactly solved
via Bethe ansatz (Richardson-Gaudin equations) [37–41].
The impurity breaks integrability by splitting the electron

pairs through exchange scattering, thereby precluding this ap-
proach. The problem also cannot be solved using conventional
impurity solvers because the bath is interacting, while the
mean-field decoupling of the charging term leads to incorrect
results [42]. Furthermore, the charge-counting trick [43,44]
is not applicable to a gapped spectrum [42]. A theoretical
tool for this family of problems has therefore been sorely
lacking, and some key questions remained unanswered, in
particular, whether any states remain present in the gap for
odd occupancy of the SC and, if so, what is their nature.

Here, we show that Richardson-type Hamiltonians with
long-range (all-to-all) interactions coupled to an interacting
QD admit a compact representation in terms of matrix prod-
uct operators (MPOs) with small 9 × 9 matrices and can be
efficiently solved without any approximations in all param-
eter regimes using the density-matrix renormalization group
(DMRG) [45–47]. Possible extensions include the capacitive
coupling between the QD and the island [48], the spin-orbit
coupling in the SC, the case of a QD in the junction between
two islands, and various multiple-QD problems.

In this Research Letter, we systematically investigate the
subgap excitations of the simplest situation: a single QD
coupled to a single SC island. The qualitative behavior de-
pends on the ratio of Ec over the SC gap �. For Ec � �, the
Kondo coupling drives the YSR singlet-doublet transition. For
Ec � �, even-odd effects arise from charge quantization: The
occupancy of the SC island varies in steps of one electron sim-
ilar to a QD in the Coulomb blockade (CB) regime. Subgap
states are present also for odd occupancy of the SC, but they
disperse very differently compared with even occupancy. The
crossover Ec ≈ � regime shows complex charging patterns
and subgap states with unique properties that strongly depend
on the parity of the number of electrons in the superconductor.
For parameters that are typical of actual devices, the nature of
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LUKA PAVEŠIĆ et al. PHYSICAL REVIEW B 104, L241409 (2021)

the subgap states is mixed: It is different from the prototypical
YSR states (large-U limit, Ec = 0) and Andreev bound states
(U = 0, Ec = 0), as well as from the subgap states of QDs
coupled to normal-state Coulomb-blockaded reservoirs.

Model. The Hamiltonian we study in this Research Letter
is H = Himp + HSC + Hhyb with [24,27,34,49,50]

Himp = εn̂imp + Un̂imp,↑n̂imp,↓

= (U/2)(n̂imp − ν)2 + const,

HSC =
∑

i,σ

εic
†
iσ ciσ − αd

∑

i, j

c†
i↑c†

i↓c j↓c j↑ + Ec(n̂sc − n0)2,

Hhyb = (v/
√

N )
∑

iσ

(c†
iσ dσ + H.c.).

Here, dσ and ciσ are the annihilation operators corresponding
to impurity and bath, σ =↑,↓, n̂imp,σ = d†

σ dσ , and n̂imp =∑
σ n̂imp,σ . ε is the impurity level controlled by the gate volt-

age applied to the QD, U is the electron-electron repulsion,
and ν = 1/2 − ε/U is the impurity level in units of electron
number. The SC has N levels spaced by d = 2D/N , where 2D
is the bandwidth, the orbital indexes i and j range between
1 and N , the dimensionless coupling constant for pairing
interaction is α, n̂sc = ∑

iσ c†
iσ ciσ , and n0 is the gate voltage

applied to the SC expressed in units of electron number. The
hybridization strength is � = πρv2, where ρ = 1/2D is the
normal-state bath density of states. A schematic representa-
tion of this Hamiltonian is shown in the top panel of Fig. 1.
Most calculations in this Research Letter are performed for
N = 800 and α = 0.23 (magnitude appropriate for Al grains
[24]), with D = 1 as the energy unit. The corresponding gap in
the thermodynamic limit is � ≈ 0.026 D [42]. The interlevel
separation is d = 2D/N = 0.0025 D ≈ �/10; thus the finite-
size corrections to BCS theory [22–24,42,51,52] are relatively
small [42]. Unless specified otherwise, the QD interaction is
U = 0.1 ≈ 4�, which is a typical value for nanowire devices,
and � = 0.1U , which corresponds to intermediately strong
coupling. In this Research Letter we focus on the situation
where the QD-SC system is not strictly isolated, but in contact
with weakly coupled tunneling probes. The ground state (GS)
with fixed (integer) total number of electrons n = ngs is deter-
mined by the gate voltages ν and n0. We use (0), (+1), and
(−1) as shorthand for the GS and the lowest-energy (subgap)
excited states with occupancy ngs ± 1, respectively.

Results. The evolution from the YSR regime to the CB
regime is clearly visible in the charging diagrams in the (ν, n0)
plane; see Fig. 1. For small Ec there is a 2e periodicity along
the n0 axis with only a weak even-odd modulation of the
subgap state energies, while for large Ec, the system instead
shows a clear 1e periodicity. The transition between the two
regimes occurs gradually for Ec of order �, with the charge
stability regions deforming from a pattern of vertical stripes
into a well-defined honeycomb diagram. With increasing �,
the singlet (blue) regions increase in size because the singlet
energy decreases with respect to the doublet energy, while
the phase boundaries become smoother (less rectangular) and
develop a diagonal slant because for large � each gate voltage
influences occupancy in both parts of the system [42].

To better understand this evolution, in Fig. 2 we follow
the dependence on the coupling � at fixed ν = 1, where the

800

801

n
0

Ec/ = 0.01 Ec/ = 0.5

800

801

n
0

Ec/ = 0.8 Ec/ = 1.2

0 1 2

800

801

n
0

Ec/ = 2.0

0 1 2

Ec/ = 20.0

U Ec

ν
n0

Γ

FIG. 1. Top: schematic representation of the system. Bottom:
phase diagrams as a function of gate voltages applied to the QD (ν)
and to the SC (n0). Dashed lines correspond to half-filling (particle-
hole symmetric) lines of QD and SC at ν = 1 and n0 = N = 800.
Red, doublet; blue, singlet. The color indicates the energy difference.

QD hosts a local moment. In the � → 0 limit the impurity is
decoupled, and for Ec < � the SC is always in a conventional
BCS state with even nsc = 〈n̂sc〉. For Ec ≈ 0, we uncover the
conventional singlet-doublet YSR transition at TK (�)/� =
0.3 [7,12,53] for a value of � that does not depend on n0; here,
TK (�) is the impurity Kondo temperature at the given value of
�. With increasing Ec < � the transition point moves to larger
values of � around even n0, where the charging term makes
the existence of Bogoliubov quasiparticles energetically un-
favorable. The opposite holds around odd n0. As Ec grows
beyond � we observe a qualitative change. The SC state in
the � → 0 limit now depends on n0: For n0 close to an even
integer value, it is a BCS state, while for n0 close to an odd
integer value, an additional unpaired electron (Bogoliubov
quasiparticle) sits at the bottom of the quasiparticle band [19]
and for � 	= 0 interacts with the electron at the impurity site
via exchange interaction, forming a singlet GS. The exact
location of the phase boundary depends in a nontrivial way on
�, U , and Ec due to a three-way competition between Kondo
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FIG. 2. Evolution from the YSR regime to the CB regime for
ν = 1. Energy difference ED − ES between the lowest-lying singlet
and doublet states in the (�, n0) plane for a range of Ec (left panels),
and in the (�, Ec ) plane for even, half-integer, and odd n0 (bottom
panels). Red, doublet; blue, singlet; black line, quantum phase tran-
sition. Right panels: QD occupancy variation.

screening, pairing correlations, and Coulomb interaction. The
latter also leads to a strong charge redistribution between the
QD and SC in the singlet GS; see right panels in Fig. 2.
Figure 3 shows the Ec dependence of impurity occupancy,
occupancy (charge) fluctuations, and spin correlations at fixed
�, for even and odd SC tuning. As Ec increases, the charge in
the state penalized by the Coulomb term is redistributed, while
the charge fluctuations generally decrease, as expected, except
for the doublet state in the odd-n0 case. The Kondo coupling
decreases (increases) with increasing Ec for even (odd) parity
of n0, which is reflected in the spin-spin correlations of the
spin-singlet states.

A striking consequence of the Coulomb repulsion is the
lack of symmetry in the subgap peak positions except for
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FIG. 3. Ec dependence of subgap state properties at ν = 1.

special points (e.g., ν = 1 and even n0); see Fig. 4. This is a
significant departure from the conventional case with Ec = 0,
where the peaks are always located exactly at ω = ±EYSR, so
that the spectra take the form of symmetric eye-shaped loops.
For Ec 	= 0, the states (±1) have in general different excitation
energies E± leading to drastic changes in the spectral shapes
even for small Ec [see, e.g., black arrows in Fig. 4(f)]. In
particular, this leads to discontinuous changes in the spectrum
when the total occupancy in the GS changes. For instance,
as ν increases, E+ decreases until reaching zero, at which
point the former (+1) state becomes the new GS. At this point
the former (−1) is no longer spectroscopically visible (i.e., it
“disappears”), since it has two electrons fewer than the new
GS. The same holds for decreasing ν for E−. An example of
such discontinuous changes in the spectrum is indicated by
vertical green arrows in Fig. 4(b). The spectrum behaves even
more remarkably for odd n0 [Figs. 4(e)–4(h)]. For moderate
Ec/� = 0.2, one observes valence skipping (occupancy jump
from 800 to 802, then back to 801) due to a redistribution of
charge between the SC and the QD, experimentally visible
as a two-sided discontinuity [Fig. 4(f), purple arrows], while
for Ec � � the excitations are pinched at ν = 1. For large
Ec > �, the spectra eventually transform into straight lines
typical of CB systems.

Discussion. The nature of the subgap states at Ec � � is
revealed in Fig. 5, where we show the properties of (0), (+1),
and (−1) as a function of ν in Fig. 5(a) and the � dependence
of the excitations at ν = 1 in Fig. 5(b). We first discuss the
case of ν = 1. For even n0, the GS is a decoupled local-
moment state, while the states (+1) and (−1) have impurity
occupancies differing by more than half an electron compared
with the ground state due to the cost Ec of changing the SC
occupancy, but they still carry some local moment that aligns
antiferromagnetically with respect to SC electrons. The exci-
tations detach from the continuum edge at small � and shift
toward the midgap region with increasing �; see Fig. 5(b).
The (+1) and (−1) are hence somewhat similar to conven-
tional YSR singlets, although their impurity local moment is
reduced not only through the Kondo mechanism, but also by
a very large charge transfer to or from the superconductor.
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FIG. 4. Subgap spectral functions for even [(a)–(d), n0 = 800] and odd integer [(e)–(h), n0 = 801] tuning of the superconductor occupancy,
as a function of the gate voltage applied on the quantum dot. The positions E+ = E (1) − E (0) and E− = E (−1) − E (0) indicate the excitation
energies of particlelike (+1) and holelike (−1) states; the grayscale shows the corresponding spectral weights w± [see grayscale bar in (h)].
The dots at E = 0 provide information about the ground state: The color encodes the GS charge sector, and the size encodes the GS impurity
occupancy nimp [see legend in (h)]. The size of gray dots denotes the impurity occupancy in the corresponding excited states [see legend in
(g)]. The charge gap for even n0 and � → 0 is � + Ec (dashed lines).

The excitations may thus be characterized as being YSR-like,
sharing some but not all features of the conventional YSR
states at Ec = 0. For odd n0, the states (0), (+1), and (−1)
are all similar to each other and carry a local moment at the
impurity site. They differ mostly in the presence or absence
of the lone Bogoliubov quasiparticle in the SC: (0) has the
quasiparticle, while (−1) and (+1) do not; (+1) differs from

(a) (b)

FIG. 5. Subgap state properties for Ec/� = 1.2 [Figs. 4(d) and
4(h)]. (a) Expectation values for (0), (+1), and (−1) states vs gate
voltage. (b) � dependence of the subgap spectra at ν = 1.

(−1) by the presence of one additional Cooper pair. Adding
an electron to the GS costs Ec and disrupts the singlet, which
further costs an energy of order JK ∝ �; however, at the
same time a Cooper pair is formed, and the energy � is
gained. Indeed, the results for n0 = 801 in Fig. 5(b) show for
small � approximately linear behavior with a zero intercept at
Ec − � = 0.2�. We thus conclude that for odd n0 the subgap
states are doublets which result from the disruption of the
strong local QD-SC singlet formed by the electron in the QD
and the lone quasiparticle in the SC (see also Fig. S4 of the
Supplemental Material for details [42]); these states have no
counterparts at all in Ec = 0 systems. Figure 5(b) shows that
for even n0 the excitations have a large weight on the QD,
while the opposite is the case for odd n0, where the electron is
mostly added to the SC island.

The dispersion (ν dependence) of excitations for large Ec

(e.g., Ec � 0.8�) is strongly affected by the charging terms,
and it follows the variation of the difference in the impurity
occupancy between the ground and excited states, as revealed
by comparing Figs. 5(a) and 4. For even n0 around half filling,
the GS occupancy is mostly flat as a function of ν, while the
(+1) and (−1) occupancies vary rapidly. This is reflected in an
equally rapid variation of the excitation spectrum at the same
parameters. Along the same lines, for odd n0 and away from
half filling, the occupancies of (0) and (+1) are similar for
ν > 1, while those of (0) and (−1) are similar for ν < 1, and
again, this is reflected in the spectral shape (in this case as flat
sections).

Conclusion. Subgap states persist in the presence of large
charging energy, but they have properties quite unlike those
of YSR states [48]. The proposed method can also address
the question of quasiparticle poisoning in Majorana islands
[17,54], gate sensing of charge-tunneling processes [55,56],
superconducting islands on surfaces [57–60], topological
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superconductivity [61], and the existence of Majorana zero
modes beyond mean field [62]. Generalization to multiple
bands will find application in multichannel and topological
Kondo effects [63–65].
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