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Qubit based on spin-singlet Yu-Shiba-Rusinov states
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The local magnetic moment of an interacting quantum dot occupied by a single electron can be screened
by binding a Bogoliubov quasiparticle from a nearby superconductor. This gives rise to a long-lived discrete
spin-singlet state inside the superconducting gap, known as the Yu-Shiba-Rusinov (YSR) state. We study the
nature of the subgap states induced by a quantum dot embedded between two small superconducting islands. We
show that this system has two spin-singlet subgap states with different spatial charge distributions. These states
can be put in a linear superposition and coherently manipulated using electric-field pulses applied on the gate
electrode. Such a YSR qubit could be implemented using present-day technology.
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I. INTRODUCTION

The coupling of an impurity carrying a local magnetic
moment to a superconductor (SC) produces discrete subgap
states, known as Yu-Shiba-Rusinov (YSR) states [1–3]. These
are spin-singlet bound states of Bogoliubov quasiparticles
screening the impurity spin through antiferromagnetic Kondo
exchange interactions. The energy gain from this coupling
allows them to descend deep into the superconducting gap.
Such subgap states appear in the spectra of many modern
superconducting devices, where local magnetic moments arise
in multiple ways, such as in adsorbed magnetic atoms or
molecules, or in semiconductor quantum dots (QDs) [4–10].

Systems of this kind are commonly modeled by extending
the Anderson impurity model [11] to the case of a super-
conducting bath, typically described by the BCS mean-field
theory [12]. Such Hamiltonians can be reliably solved by
various numerical approaches, with the numerical renormal-
ization group (NRG) proving the most successful [13–18].

Recent developments of experimental techniques en-
abled the fabrication of epitaxial SC islands in hybrid
semiconductor-SC devices that are small enough for the
Coulomb repulsion between the electrons to be important
[19,20]. This is taken into account by an effective charging
term ECn̂2

SC, where n̂SC is the SC electron number operator
and EC = e2

0/2C is the charging energy with C the island’s
total capacitance [21–29]. Incorporating this term into exist-
ing numerical techniques proves very difficult for two reasons.
First, the electron number is not a conserved quantity in the
BCS theory, which makes the implementation of an electron
number operator problematic [30]. Second, the Coloumbic
repulsion of the SC electrons makes the bath an interacting
system, resulting in a problem which cannot be solved by any
traditional impurity solver. Most theoretical treatments were
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based on ad hoc pictures relying on physical intuition rather
than solving microscopic models.

In a recent paper [31], we presented a numerical method
which does not suffer from the described problems. We in-
troduced a model that builds on previous work in the context
of ultrasmall superconducting grains [23,32–34], where the
Richardson-Gaudin charge conserving model of superconduc-
tivity [35–37] was successfully applied. This model describes
the SC as a set of single-particle energy levels with an at-
tractive all-to-all pairing interaction and is well suited for the
description of small SC systems. Using such a model with a
few hundred energy levels is very close to the BCS description
appropriate in the thermodynamic limit but retains the advan-
tage of a well-defined number of particles and thus the ability
to include in a clean and well-defined manner the Coloumbic
repulsion in the superconducting island into the model. Using
the density matrix renormalization group (DMRG) [38–40] as
the numerical solver, we are able to treat the charging term
exactly and on the same level as other parameters and obtain
accurate results in all parameter ranges. This approach was
shown to give results in remarkable agreement with experi-
ments in a setup of a QD with a single SC island [41]. The
implementation based on matrix product states allows us to
calculate basically any observable and allows for a detailed
theoretical insight into the nature of the subgap states.

In this paper, we extend our analysis to a QD embedded
between two SC islands. This is motivated by the considerable
experimental interest in complex hybrid devices [42,43] and
specifically in the two-channel problems where the impurity
is coupled to two SCs, e.g., embedded in a Josephson junction
[44–48]. In the absence of flux bias, to make the two SCs be-
have as two independent channels, at least one of them needs
to have a significant charging energy. It may be noted that this
is also a necessary condition for observing the two-channel
Kondo effect in normal-state systems [25,49–52]. Coupling
an impurity spin to two independent SC islands produces
two singlet subgap states, as a Bogoliubov quasiparticle from
either of the channels can screen the impurity spin [53]. In
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this paper, we investigate the nature of these subgap states
in realistic models of hybrid devices, focusing on the singlet
symmetry sector with an even total number of electrons in the
system.

This paper is organized as follows. In Sec. II, we introduce
the model and discuss the technical issues arising from the
presence of multiple superconducting regions. In Sec. III,
we discuss the symmetric situation with two equivalent SCs,
having the same SC gap � and the same charging energy
EC . In Sec. IV, we analyze the asymmetric situation with
different charging energies (e.g., one large SC and one small
superconducting island). In Sec. VI A, we model a realistic
QD by reducing U , and thus moving away from the Kondo
limit to an experimentally relevant regime. We briefly discuss
the effect of decreased U and then proceed in Sec. VI with the
gate tuning effects that ultimately reveal a regime propitious
to operating such devices as a YSR qubit. In Sec. VII, we
calculate the electric transition moments, quantities important
for manipulation of subgap states. We close with a discussion
and a conclusion.

II. MODEL AND METHOD

A. Hamiltonian

The Hamiltonian consists of a single impurity level cou-
pled to two SC islands [11,54,55]:

H = Himp +
∑

β=L,R

(
H (β )

SC + H (β )
hyb

)
, (1)

where

Himp = εn̂imp + Un̂imp,↑n̂imp,↓ = U

2
(n̂imp − ν)2 + const,

H (β )
SC =

N∑
i,σ

εic
†
i,σ,βci,σ,β − αd

N∑
i, j

c†
i,↑,βc†

i,↓,βc j,↓,βc j,↑,β

+ E (β )
C

(
n̂(β )

SC − n(β )
0

)2
,

H (β )
hyb = (vβ/

√
N )

N∑
iσ

(c†
i,β,σ dσ + d†

σ ci,β,σ ).

Here ε is the energy level and U the electron-electron
repulsion on the QD. The impurity term can be rewritten
in terms of ν = 1/2 − ε/U , the impurity level in units of
electron number. dσ and ci,β,σ are the annihilation operators
corresponding to the QD and the two SC baths labeled by
β = L, R (left and right). The spin index is σ =↑,↓. Each
SC bath is modeled by N energy levels εi spaced by a
constant separation d = 2D/N , where 2D is the bandwidth.
The levels are coupled all-to-all by a pairing interaction with
strength α [54,55]. The SCs are coupled to the QD with
the hybridization strengths �β = πρv2

β , where ρ = 1/2D is
the normal-state density of states in each bath. The number
operators are n̂imp = ∑

σ d†
σ dσ for the impurity and n̂(β )

SC =∑N
i=1,σ c†

i,σ,βci,σ,β for each SC bath. E (β )
C are the charging

energies, with n(β )
0 the optimal occupation of the SC island

in units of electron charge. A sketch of the model system is
shown in Fig. 1. In experimental setups, ν, n(β )

0 , and �β are
typically continuously tunable by the voltages applied to gate

FIG. 1. Schematic representation of the system: An interacting
quantum dot embedded between two superconducting islands with
charging energies E (L)

C and E (R)
C . The electron occupancy in the dif-

ferent parts of the device is tunable by the gate voltages n(L)
0 , n(R)

0 ,
and ν.

electrodes, while U , E (β )
C , and � are device properties only

weakly affected by the gate voltages.
If E (L)

C = E (R)
C , n(L)

0 = n(R)
0 , and �L = �R, the problem has a

mirror (left-right) symmetry. In the absence of charging terms,
the Hamiltonian then simplifies to a single-channel problem.
This is easy to establish using an appropriate unitary transfor-
mation after a mean-field decoupling of the pairing terms. The
same transformation applied to the original Hamiltonian leads
to terms that mix states in both SCs (see Appendix A), but
the effects of these terms become less physically significant
with the increasing number of levels N , and disappear in the
thermodynamic limit (with the gauge symmetry breaking).

B. Parameter choices

The calculations are performed for N = 200 energy levels
in each SC. Using the half-bandwidth D = 1 as the energy
unit, this corresponds to an interlevel spacing of d = 2D/N =
0.01. We choose α = 0.4, which gives rise to the SC gap
� = 0.165 in each bath. This value is chosen so an appropri-
ate number of levels is engaged in the pairing interaction, thus
minimizing the finite-size effects while also minimizing the
finite-bandwidth effect. Disregarding the finite-size correc-
tions, the low-energy properties of the model are universally
scalable by �.

We have implemented the Hamiltonian in the matrix prod-
uct operator (MPO) form using matrices of dimension 9×9.
The full expressions are given in Appendix B. We use the
DMRG [38] to calculate the lowest eigenstates of the system
in symmetry sectors defined by the total number of particles
n and the total z component of spin Sz. We denote these
by |n, i〉, with i = 0 the ground state (GS) in a given sector
and i = 1 the first excited state (ES). The states with even n
are spin singlets with Sz = 0, the states with odd n are spin
doublets with Sz = ±1/2. The reference state |ψref〉 is defined
by filling the system with an even-integer number of electrons
N in each SC and one electron in the QD for a total of
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nref = 2N + 1 electrons. This spin-doublet state is the ther-
modynamic ground state of the system for ν = 1, n(β )

0 = N
in the limit �β → 0; it is a product state of two BCS wave
functions in SCs (each projected to a fixed electron number
N ) and a local moment on the QD site. We typically pick nref

close to half filling 2N + 1 to minimize the finite-size effects,
but the results discussed in the following do not depend on this
choice. The calculations are performed for states with total
charge n spanning a narrow range around nref .

The energies of the low-lying excitations and their na-
ture are determined by the charge distribution controlled by
(n(L)

0 , ν, n(R)
0 ) and the impurity couplings �L, �R. The parity

of the occupation number in SC islands is important for super-
conducting pairing, resulting in the even-odd effect [56–61].
Even occupation is favored in each SC, while in the case of
odd occupation a Bogoliubov quasiparticle is formed, increas-
ing the energy by �. The charging energy EC determines the
energy cost of the situation where the filling of the supercon-
ducting island is different from n0. If n0 is an even integer,
all excitations with odd SC island occupancy have a further
energy cost of EC . In SC islands, the charge gap therefore
increases to � + EC . The picture is reversed if n0 is tuned
to an odd integer value. The energy of the even-occupancy
SC GS is then increased by EC , reducing the gap or even
closing it completely at EC = �. Further increase of EC then
reopens the gap which gradually develops the character of a
Coulomb blockade gap. By introducing the impurity coupling
�, the unpaired Bogoliubov quasiparticles can antiferromag-
netically bind to the impurity, giving rise to the YSR subgap
states. The strength of the binding, and the resulting energy
reduction, is characterized by �. The subgap spectrum of the
single-channel model with charging energy was thoroughly
investigated in Ref. [31].

C. Notation

The eigenstates of the full model can be qualitatively
characterized through the results of a simplified calculation
with a small number of energy levels (at a very rough level
even for N = 1), which gives low-lying excitations that are
in one-to-one correspondence with those of the full problem
and smoothly converge to the correct result with increasing
N . This motivates us to introduce a simplified notation for the
basis states |SL, Simp, SR〉, where Si denotes the spin in the left
bath, at the impurity, and in the right bath, respectively. Thus
the state consisting of an electron in the left bath bound into a
spin-singlet state with the impurity electron is written as

|φL〉 = (|↓,↑, 0〉 − |↑,↓, 0〉)/
√

2, (2)

while the spin-singlet in the right bath is

|φR〉 = (|0,↑,↓〉 − |0,↓,↑〉)/
√

2. (3)

It must be stressed, however, that the excitations in the large-N
limit are not single-particle states but rather collective many-
body states involving many electron and hole states around
the Fermi level.

(a)

(b)

(c)

FIG. 2. (a), (b) System-size dependence of the subgap spectrum
for small �/U = 0.02, when the subgap states barely detach from the
continuum, for (a) EC = 0 and (b) EC = 0.8�. (c) Subgap spectrum
as a function of EC at fixed system size N = 200. U = 50�, nref =
2N + 1 is an odd integer.

D. Fixed-phase versus fixed-charge superconducting states

In the BCS theory, the GS in the thermodynamic limit has
broken symmetry. In the grandcanonical picture for a fixed
phase of the SC order parameter, the GS does not have a
well-defined number of particles: it is a superposition of states
with n, n + 2, n − 2, . . . particles. Our model has, however, a
finite size and we work in the microcanonical ensemble. The
GS thus has a fixed number of particles, while the BCS phase
is indeterminate. In calculations for a single SC bath, this
poses no conceptual nor technical difficulty and the results
are fully equivalent to those of the BCS theory in the limit
of N → ∞.

The situation is different in the presence of two SC baths
with finite sizes. When they have small charging energies (the
EC → 0 limit), one of them can act as a particle reservoir for
the other. Let us consider the situation with nref = 2N + 1
electrons in the system for �i → 0. We find that the GS has
N particles in each SC bath, the remaining one occupying the
QD level. The first ES has a configuration (N + 2,N − 2),
i.e., one Cooper pair moves from one SC to the other at the
energy cost of 2d and tending to zero in the thermodynamic
limit, as shown in Fig. 2(a). It is important to stress that
these (near) degenerate states are physical and not a numerical
artifact. In the thermodynamic limit, the symmetry breaking
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would fix the phase difference between the SC baths and
eliminate all states save one by singling out the suitable linear
superposition of (nL, nR) states. The lowest excitation in the
equal-charge sector would then have energy 2� (i.e., the
breaking of a single Cooper pair), as expected in the BCS
picture. See Ref. [62], Chap. 7, for an in-depth discussion of
physics in small superconducting grains.

In a finite-size system, the multitude of low-lying excita-
tions for very small values of EC poses a technical difficulty
and, for example, hinders access to the more important
Cooper-pair-breaking excitations on the scale of 2�. Due to
the variational nature of DMRG, obtaining the ith ES requires
the calculation of all i states with lower energy. While it is
nominally possible to obtain many ESs, it is costly in time
and computational resources, and the results are often not
reliable, especially if the states are nearly degenerate, as is
the case here. The same issue also arises in the spin-singlet
sector, where each YSR singlet substrate would have replicas
at slightly higher energies differing only in the distribution of
the Cooper pairs between the SCs.

Fortunately, here we are interested in small systems which
intrinsically have nonzero charging energies EC . Moving a
Cooper pair from one SC bath to another then costs 4E (L)

C +
4E (R)

C . When this energy cost is larger than 2�, the (N + 2,

N − 2) states are pushed beyond the first excitation with the
(N ,N ) configuration, which will then become the first ES
of the system. We therefore constrain most of our calcula-
tion to the regime with E (L)

C + E (R)
C > �/2, where there are

no technical issues and the lowest-lying ES with a broken
Cooper pair appears in the doublet sector, see Fig. 2(b), where
E (L)

C = E (R)
C = 0.8�. Figure 2(c) shows the evolution of the

subgap spectrum with increasing EC , illustrating the quick
change in nature of the doublet ES when EC > �/4. As
� ≈ 0, the singlet nref + 1 states are barely below the qua-
sicontinuum and therefore have energy marginally lower than
� + EC .

We do not lose access to any important parts of the pa-
rameter space by the restriction to E (L)

C + E (R)
C > �/2, as

precise calculations in the thermodynamic limit are possi-
ble using the NRG for EC = 0. Furthermore, for left-right
mirror-symmetric problems, where the most relevant levels
are the lowest ones in each parity subspace, the DMRG cal-
culation could be implemented with the parity as a conserved
quantum number after a suitable transformation of the Hamil-
tonian in the symmetry-adapted basis and an elaboration of
its MPO form. Alternatively, one could target ESs with appro-
priate parity by adding weight terms that penalize states with
undesired parity in the optimization sweeps. The required
parity operator could be implemented using tensor index
reordering.

III. SUBGAP STATES: CASE OF EQUIVALENT
SUPERCONDUCTORS

In this section, we consider the simplest case of symmetric
devices composed of two equivalent SCs, i.e., E (L)

C = E (R)
C ≡

EC . We also set n(L)
0 = n(R)

0 = N with even integer N and
restrict the discussion to the Kondo limit of U/� = 30 and
ν = 1, where the occupation of the QD is pinned to 1.

FIG. 3. Subgap spectrum for �L = �R ≡ � and equal charging
energies E (L)

C = E (R)
C = 0.4�. At each �, the energy of the lowest

doublet state is taken as the reference value for energies, i.e., E (n =
nref , i = 0) ≡ 0. The subgap states are accompanied by sketches
indicating their nature: the large spin represents the impurity elec-
tron, the small arrows denote the Bogoliubov quasiparticles, and the
red circles represent a singlet configuration of the encircled levels,
|↑↓〉 − |↓↑〉. The orange shaded area above the orange dotted line
denotes the quasi continuum of states in the nref + 1 sector.

A. Symmetric QD coupling

We first examine the case of symmetric coupling of the
impurity to both baths, �L = �R ≡ �. The system then has
mirror symmetry and we denote the corresponding parity as
gerade/ungerade in the following. The low-lying states with
an odd number of electrons nref (spin doublets) and an even
number nref + 1 (spin-singlets) are shown in the form of an
energy-level diagram in Fig. 3. For � = 0, the GS is a product
state consisting of a BCS-like state of Cooper pairs in each
channel and a decoupled electron sitting at the impurity site.
The lowest ES with nref + 1 electrons is the Bogoliubov state
at the bottom of the quasicontinuum (represented using orange
shading) with energy � + EC ; the presence of the quasicon-
tinuum of Bogoliubov states is confirmed by calculating a
number of higher ESs.

For � > 0, two states detach from the continuum to be-
come the spin-singlet subgap states. This is clearly different
from the situation in the EC = 0 limit, where only the gerade
state is inside the gap, while the ungerade combination is fully
decoupled from the impurity and remains inside the contin-
uum (in the absence of flux bias [8,63]; see Appendix A). With
increasing �, both states descend deeper into the gap, with
the gerade state always having lower energy. This is different
from the situation in the two-channel Kondo model where the
two subgap states are degenerate for equal exchange coupling
constants [53]. This disparity is due to the interchannel charge
fluctuations included in our (realistic) model, which material-
ize as off-diagonal terms in the effective exchange coupling
matrix Jαβ obtained with the Schrieffer-Wolff transformation
[64]. These separate the gerade and ungerade eigenstates in
energy, and correspond to different YSR wave functions, with
an antinode and a node at the impurity site for the gerade and
ungerade combinations of Bogoliubov states, respectively. In
short, a two-channel Kondo model with symmetric exchange
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coupling does not correspond to a two-channel single impurity
Anderson model with symmetric hybridization terms.

The continuum of excitations in the nref + 1 sector begins
at � + EC . At � = 0, it consists of product states of the BCS-
like state with nref electrons and a Bogoliubov quasiparticle
in one of the channels. The lowest lying continuum states are
|ψref〉 ⊗ (QPL ± QPR)/

√
2, where QPβ denotes a Bogoliubov

quasiparticle in channel β. The small deviation from the � =
0 gap value of � + EC is due to the ∝ �2 virtual tunneling
of quasiparticles between the channels; these processes are
suppressed if EC and/or U are increased.

The nature of the subgap singlets is investigated in Fig. 4.
The first subgap state is an even (gerade) linear combination
of spin-singlet YSR states from each channel.

|nref + 1, 0〉 = |ψg〉 ≈ (|φL〉 + |φR〉)/
√

2

= 1
2 [(|↓,↑, 0〉 − |↑,↓, 0〉) + (|0,↑,↓〉
− |0,↓,↑〉)]

= 1
2 [(|↓,↑, 0〉 + |0,↑,↓〉) − (|↑,↓, 0〉
+ |0,↓,↑〉)], (4)

where the final line shows that this state may also be inter-
preted as a spin-singlet formed between the impurity spin
and an even-parity combination of Bogoliubov excitations
from both electrodes, while the second is an odd (ungerade)
combination of the singlets,

|nref + 1, 1〉 = |ψu〉 ≈ (|φL〉 − |φR〉)/
√

2

= 1
2 [(|↓,↑, 0〉 − |↑,↓, 0〉) − (|0,↑,↓〉
− |0,↓,↑〉)]

= 1
2 [(|↓,↑, 0〉 − |0,↑,↓〉) − (|↑,↓, 0〉
− |0,↓,↑〉)], (5)

with an alternative interpretation as a spin-singlet formed
between the impurity spin and an odd-parity combination
of Bogoliubov electrons from both electrodes. The parity of
the states is confirmed by the calculation of the one-particle
density matrices in the baths, ρi j = 〈c†

i c j〉, at finite �, shown
in Fig. 4(a). The intrachannel correlations are in large part the
result of superconducting pairing: ρi j is large for the levels
which contribute to the creation of Cooper pairs and small
between levels that are fully occupied or empty. The inter-
channel correlations uncover the nature of the states. Positive
ρi j in the center of the interchannel correlation (off-diagonal
blocks) in the left panel is a characteristic feature of a gerade
configuration, while the negative values (right panel) are a
feature of an ungerade state.

In Fig. 4(b), we illustrate the different composition of the
two YSR singlets despite �L = �R, thus further revealing the
differences compared to the pure two-channel Kondo model.
We plot excess charge compared to a reference doublet state
(left) and the spin-spin correlations 〈Simp · Si〉 between the im-
purity local moment and the SC single-particle energy levels
i = 1, . . . , N , with energies between −1 and 1 (right). Both
plots indicate that the singlet is formed between the impurity
and the excess electron, which is located close to the Fermi
level, but the charge distribution is not identical in the two

(a)

(b)

(c)

FIG. 4. Singlet subgap states. (a) Channel density matrix ρi j =
〈c†

i c j〉 for the two singlet subgap states. �/U = 0.2, EC = 0.4�. The
diagonal blocks represent intrachannel density matrices, while the
off-diagonal parts represent the interchannel correlations. (b) Occu-
pation and spin-spin correlations between the impurity and the baths.
�ni is the excess charge compared to the reference doublet state at
� → 0. �/U = 0.2, EC = 0.4�. (c) � dependence of the width of
the spin-spin correlation peak. EC = 0.4�.

states. The width of the spin-spin correlation peak with in-
creasing � is shown in Fig. 4(c) and is in qualitative agreement
with the well-known Kondo limits. At large coupling, the
impurity is screened by the electron localized at r = 0, with
a broad distribution in energy, while at small coupling the
screening is performed by the electrons with energies close
to Fermi energy.

B. Asymmetric QD coupling

We now examine the case of �L = �R, see Fig. 5. We fix
�L + �R = 0.1U and study the effect of the deviation from
the equal-� tuning by simultaneously increasing �R and de-
creasing �L. The energy diagram in Fig. 5(a) is accompanied
by Figs. 5(b) and 5(c), illustrating the nature of the singlet
states. In Fig. 5(b), the deviation from half-filling (even integer
N = (nref − 1)/2) in each SC island is plotted. As we are
in the limit of a very large U/�, the impurity occupation
always remains very close to 1. Therefore, this plot uncovers
the position of the unpaired quasiparticle in the SC chan-
nels. The impurity-channel spin-spin correlations, defined by
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(a)

(b)

(c)

FIG. 5. Equivalent superconductors, asymmetric QD coupling.
The dependence of the subgap states on δ� = �R − �L with the sum
�L + �R = 0.2U kept constant. (a) Subgap spectrum. Subgap states
are accompanied by sketches indicating their nature. The orange
shaded area represents the continuum of states in the nref + 1 sector.
(b) Deviation from half filling in the superconductors for the singlet
subgap states. (c) Spin-spin correlations between the impurity and
the baths for the singlet subgap states. The value of −3/4 corre-
sponds to a pure (saturated) singlet configuration.

χβ = ∑N
i=1〈Simp · S(β )

i 〉 are presented in Fig. 5(c) and contain
information on the screening of the impurity local moment.

With increasing δ�, the nature of the subgap states grad-
ually changes from the inversion-symmetry eigenstates |ψg〉
and |ψu〉 with equal χ in both channels to states that are
closer to simple YSR singlets |φL〉 and |φR〉. The state with
the lowest energy is the one corresponding to the larger hy-
bridization (�R in our case, so |φR〉), while the excited subgap
state transforms into |φL〉. The energy of the excited sub-
gap state increases as �L is decreased, and it finally merges
with the continuum when the left channel decouples from the
system at δ� → 0.2 (therefore, �L → 0). This is different
from the superconducting two-channel Kondo model, where
breaking the coupling symmetry quickly pushes the second
ES beyond the gap [53]. We note also that in the normal-state
two-channel Kondo problem, a small difference in couplings
immediately leads to a crossover to a Fermi-liquid fixed point

FIG. 6. Nonequivalent superconductors, E (L)
C � E (R)

C . Subgap
spectra dependence on �R for constant �L/U with E (L)

C = 0.1�,
E (R)

C = 1.5�. The value of �L/U is indicated by the vertical dashed
line.

strictly at zero temperature, with one of the channels com-
pletely decoupled. In problems with a superconducting gap,
the renormalization is terminated at the scale of the gap, thus
a complete decoupling of a second channel does not occur
except in the cases of extreme asymmetry.

IV. SUBGAP STATES: CASE OF
NONEQUIVALENT SUPERCONDUCTORS

The experimental interest in devices where the QD is em-
bedded between one macroscopic SC contact and one SC
island provides the motivation for considering the case of
strongly differing charging energies. The asymmetry in the
charging energies induces a preference for optimal occupation
in the channel with larger EC , which is even for n(β )

0 tuned to
an even value. In the singlet sector with an even total number
of particles, this implicitly favors the spin-singlet YSR state
formed between the impurity spin with a decoupled Bogoli-
ubov quasiparticle in the channel with smaller EC .

In this section, the results will be presented by plotting the
evolution of the subgap states with changing �R at fixed �L

for several different cases of nonequivalent SC parameters.

A. General considerations

Unequal charging energies influence the subgap states in
one important aspect. The transition from the ungerade/gerade
regime at small δ� toward |φL〉/|φR〉 subgap states at large
δ� is decelerated (i.e., requires larger δ�) if the strongly
coupled channel has larger charging energy. The hybridiza-
tion favors configurations with the unpaired particle in the
strongly coupled channel, while its charging energy enforces
even occupation. The crossover occurs only when the larger
� is big enough to overcome the charging-energy penalty.
This is demonstrated in Appendix C using a zero-bandwidth
calculation.

B. Case of E (L)
C � E (R)

C

If the difference in EC is very large, this mechanism may
cause the weakly coupled channel with large charging energy
to almost completely decouple from the system. Such decou-
pling is illustrated in Fig. 6 for the case of E (L)

C � E (R)
C . The

second subgap state does not descend deeper into the gap
even for very large �R, and we effectively obtain a single
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(a)

(b)

(c)

FIG. 7. Nonequivalent superconductors, E (L)
C � E (R)

C . (a) Sub-
gap spectrum dependence on �R for constant �L/U = 0.1 (�L =
�R tuning is indicated by the vertical dashed line). The states are
accompanied by sketches of the charge configurations. The blue
ovals represent Cooper pairs. (b) Deviation from half filling in
the superconducting islands of the singlet subgap states. (c) The
impurity-channel spin-spin correlation of the singlet subgap states.
E (L)

C = 0.1�, E (R)
C = 1.5�.

channel YSR singlet in the right channel, with a barely visible
contribution from the left one.

C. Case of E (L)
C � E (R)

C

The subgap spectrum is most intriguing in the regime of
E (L)

C � E (R)
C . The charging terms favor even occupation in the

right channel, therefore singlet screening in the left. For low
�R < �L, we observe the decoupled situation with a single
subgap singlet |φL〉 and a decoupled right channel, Fig. 7.
When �R increases beyond �L, the system transitions into the
regime where the hybridization terms favor |φR〉, which is at
the same time strongly disfavored by the charging energies.
The lower subgap state transforms into a right-channel sin-
glet state only for �R � �L, when the strong hybridization
eventually overcomes the energy penalty due to E (R)

C . The
excess charge and impurity-channel spin correlations shown
in Figs. 7(b) and 7(c) illustrate the smooth transition of the
lower singlet state between the |φL〉 and |φR〉 limits. The spin
correlations do not reach the saturated singlet value of −3/4,

FIG. 8. Evolution of the deviation from half filling in the super-
conducting islands with varying charging energy asymmetry. The
sum E (L)

C + E (R)
C = 1.5� is kept constant, with δEC = E (R)

C − E (L)
C .

�L = 0.1U , �R = U . The vertical dashed line roughly corresponds
to the rightmost point of Fig. 7(b).

indicating that even for very large �R this state never quite
obtains the nature of a pure singlet.

A second subgap state descends into the gap at some finite
�R. Curiously, this i = 1 subgap state is not a left-channel
YSR singlet as one might expect. Instead, the spin correla-
tions show a very close relation to the i = 0 subgap state,
increasingly so as �R grows large. It transpires that the i = 1
is obtained from the i = 0 state by a transfer of a Cooper
pair between the SCs, i.e., while the i = 0 state has charge
configuration (N , 1,N + 1), the i = 1 state corresponds to
(N + 2, 1,N − 1). This allows the ES to also obtain the
energetically optimal nature of a right-channel YSR singlet.
The transfer of two additional electrons only costs 4E (L)

C ,
corresponding to approximately 0.4� in the example shown
(plus 2d , a finite size effect).

The evolution of the channel occupation with increasing EC

asymmetry is shown in Fig. 8. By increasing δEC (decreasing
E (L)

C and increasing E (R)
C ), the second subgap state approaches

the (N + 2, 1,N − 1) limit. For the parameters chosen here,
the charging energy penalty overcomes the � coupling just
as E (L)

C → 0 and the occupation of the subgap states tends
toward even occupation in the right channel, following the
dominant charging energy effect. It should be stressed that
the existence of such an ES is not a numerical artifact but
rather a signature of the physics of small SC islands with large
charging energies.

D. YSR spin-singlet qubit

The regime of E (L)
C < E (R)

C with �L < �R seems to be
the most appropriate for the investigation of the occurrence
of two singlet subgap states, both well separated from the
quasicontinuum at higher energies. In particular, it appears
possible to achieve energy separation between the singlets
that is lower than the transition energy from the upper level
to the continuum. This is required for the implementation
of qubits based on a linear superposition of the YSR singlet
states, a YSR qubit. The relative position of the states is highly
tunable: the energy difference from the gap edge is increased
by increasing �R. The energy difference between states de-
pends on E (L)

C , which is typically a device property. If E (L)
C is
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(a)

(b)

(c)

FIG. 9. U dependence of the subgap states. (a) Subgap spectrum
as a function of U . (b) QD charge fluctuations in the subgap singlet
states. (c) Probabilities Pn that in the lowest singlet state the QD is
occupied by n electrons. Here we show the symmetric case with con-
stant � = �L = �R = 0.1U , EC = E (L)

C = E (R)
C = 0.7�. U is scaled

by � + EC , the first being the charging energy scale of the QD and
the latter of the SC islands. The vertical line at U/� = 4 corresponds
to the regime in which realistic devices operate.

small, there will be further singlet states with two, three, etc.
Cooper pairs transferred between the SCs, but the energy cost
for those increase quadratically, resulting in nonmonotonic
spacing.

We further investigate this parameter regime in Sec. VI
by considering the effects of tuning of the gate voltages in
the system. These determine the favorable occupation of the
system components, which can strongly influence the nature
of the subgap states.

V. REALISTIC QD

While the Kondo limit of large electron-electron repulsion
on the QD, U � �, is useful for studying the nature of the
YSR subgap states in an ideal setting, a large class of real
devices in current use operate in the regime of comparable
parameter values, U ≈ � ≈ EC . By decreasing U , we move
away from the Kondo limit where the QD behaves almost
as a pure magnetic impurity, thus changing the nature of the
subgap states from the YSR singlets (due to Kondo exchange
interaction) by increasing the admixture of wave functions
with Andreev bound state (ABS) character (due to proximity
effect) and the role of Coulomb interaction. The changing
nature of the subgap singlets as a function of U is demon-
strated in Fig. 9. We consider a symmetric case with constant
�/U = 0.1 and EC = 0.7�. The level diagram in Fig. 9(a)
shows that the energy difference between the subgap singlets
is constant at large U/�, determined mostly by �/U . With
decreasing U , the upper singlet disappears into the continuum,
while the lower one approaches the energy of the doublet GS.

FIG. 10. Realistic U = 4� and E (L)
C � E (R)

C . Subgap spectra de-
pendence on �R at constant �L/U = 0.1, indicated by the black
vertical dashed line. E (L)

C = 0.1�, E (R)
C = 1.5�. The vertical dotted

lines correspond to n(R)
0 sweeps presented in Fig. 11.

In the absence of charging energy, a pair of singlet ABS states
is expected, with energy symmetrically above and below the
doublet state, the difference between them determined by �.
As �/U is constant in our plot, U → 0 means � → 0 as
well. This is why the lowest singlet and doublet states appear
degenerate in the limit of small U . Furthermore, the charging
energy breaks the degeneracy between the states with a differ-
ent number of Cooper pairs in the SC islands, thus creating an
energy difference between the |0〉 and |2〉 states on the QD.
The impurity in the ground single state has predominantly
double occupancy, while in the ES it is predominantly empty.
The energy cost of the ES is 4EC (for an additional Cooper
pair in the SC), so this state lives far beyond the continuum
of decoupled excitations. The QD charge fluctuations are
presented in Fig. 9(b). They are small in the Kondo limit
at U � �, where the QD is a pure magnetic impurity and
the only charge fluctuations correspond to virtual processes
that generate the Kondo exchange scattering JK ∝ �/U . The
charge fluctuations are also small for U � � + EC , because
the charging effects in the SC islands strongly determine the
QD occupation. They are hence the strongest in the crossover
regime, which is where the experimental devices operate.
Finally, Fig. 9(c) shows the diagonal elements of the QD
density matrix for the ground singlet state |nref + 1, 0〉. Pn is
the probability that the QD is in a state with occupation n. A
crossover from a large magnetic moment in the Kondo regime
(large P1) toward ABSs (large P0 + P2) is evident.

To obtain experimentally relevant results, from this point
on we set U to a value appropriate for contemporary InAs
nanowire QD devices with top gates [41], U/� = 4. The
vertical dashed line at U = 4� in all panels of Fig. 9 demon-
strates that this situation is far away from either limit, i.e.,
in the regime where charge fluctuations are important and
the singlet states are neither YSR nor ABS. This competition
between U , �, and EC thus opens a new degree of complexity
in the formation of the eigenstates [31,41]. The subgap states
are not simple combinations of singlets that we had previ-
ously examined but rather some more complicated entities
that generally exhibit noninteger occupation in each system
component. The competition reduces the local moment on the
QD, which diminishes the importance of hybridization. We
demonstrate the effect in Fig. 10, where the �R dependence
of the subgap spectra is shown for U = 4�. The decreased
importance of � becomes obvious when one compares this

075129-8



QUBIT BASED ON SPIN-SINGLET YU-SHIBA-RUSINOV … PHYSICAL REVIEW B 105, 075129 (2022)

sweet spot

(a)

(b)

(c)

FIG. 11. Subgap spectra with a realistic value of U = 4�, E (L)
C =

0.1�, and E (R)
C = 1.5�. Varying n(R)

0 and (top to bottom) increasing
�R. The colors of the panel frames correspond to vertical dotted lines
in Fig. 10, indicating the position of the cut.

plot to Fig. 7(a), which is equal in all parameters but at much
larger U .

VI. GATE VOLTAGE TUNING

In the following section, we investigate the gate voltage
dependencies on the SC islands and in the QD. We mainly
focus on the regime with two nearby subgap states presented
in Sec. IV C, but with U = 4�. The goal in this section is
twofold. First, we presented results in the experimentally rel-
evant regime. Second, we point out the optimal points for the
operation of a proposed YSR qubit and show that they occur
when the energy difference between the subgap states has a
stationary point, i.e. is minimal.

A. SC island gate voltage tuning

Figure 11 illustrates the transformation of the subgap spec-
tra with varying n(R)

0 (the gate voltage setting the occupancy of
the right SC island) for a range of �R. By tuning n(R)

0 toward
an odd integer value N + 1, the large E (R)

C enforces odd occu-
pation in the right channel. This results in the decoupling of
the left channel in a large interval around odd n(R)

0 and a single
YSR-like subgap singlet. This is the same decoupling effect

FIG. 12. Subgap spectra with varying n(L)
0 . Realistic value of

U = 4�, at the strongly asymmetric point with E (L)
C = 0.1� and

E (R)
C = 1.5� and �L/U = 0.1U , �R/U = 1. The energy difference

between the singlets has a minimum at n(L)
0 ∼ N .

as seen in Fig. 6, where odd occupation of the right channel
is enforced by a large E (L)

C term at even n(L)
0 . As E (R)

C > �,
we observe the closure of the transport superconducting gap
(the difference between the BCS-like doublet state |ψref〉 and
the nref + 1 quasicontinuum) around odd n(R)

0 , as predicted
in the single-channel model [31]. Increasing �R summons a
second bound state into the gap and increases the interval at
which it is present. At very large �R and close to n(R)

0 = N , the
excited subgap state exhibits a further decrease in energy, as
exchange of the additional Cooper pair between the channels
becomes favorable. The energy difference between the subgap
states is minimal at a value of n(R)

0 which is somewhat lower
than N . This is due to the fact that we are considering the
states in the nref + 1 sector. These have an additional particle
compared to half filling, thus having lower energy (compared
to the reference |ψref〉 state) in the (n(L)

0 , n(R)
0 ) = (N ,N − δ)

parameter point compared to the (N ,N + δ) one, where δ

represents a small deviation from the half-filling point. If the
states in the nref − 1 sector were shown instead, the situation
would be symmetrically mirrored over the n(R)

0 = N point,
with the minimal energy difference at n(R)

0 = N + δ.
Figure 12 shows the n(L)

0 dependence of the energy spec-
trum, corresponding to the case with large hybridization
asymmetry shown in Fig. 11(c). The energy of the decoupled
continuum states depends linearly on n(L)

0 , with the slope
given by E (L)

C . The gap width is � + E (L)
C when n(L)

0 = N and
� − E (L)

C when n(L)
0 = N + 1. While the energies of the states

themselves exhibit a finite slope throughout the n(L)
0 range,

the derivative of the energy difference becomes zero close to
n(L)

0 = N + 1. The system thus has an operational sweet spot
in both island gate voltage tunings.

B. QD gate voltage tuning

In typical experimental setups, the QD gate voltage is
easily tunable as well. In our model, this is represented by
the term U/2(n̂imp − ν)2, where U/2 plays the role of the
QD charging energy and ν is the favorable occupation of the
QD set by the gate. Here we investigate the properties of the
spectra for the system in the symmetrical and strongly asym-
metrical cases. Tuning the QD gate voltage away from the
particle-hole (p-h) symmetric point ν = 1 decreases the local
magnetic moment of the dot. A completely filled (or empty)
QD thus does not have a local magnetic moment, suppressing
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LUKA PAVEŠIĆ AND ROK ŽITKO PHYSICAL REVIEW B 105, 075129 (2022)

(a)

(b)

FIG. 13. QD gate voltage tuning with a realistic value of U ≈
4�. (a) E (L)

C = E (R)
C = 0.8�, �L = �R = 0.2U , (b) E (L)

C = 0.1�,
E (R)

C = 1.5�, �L = 0.1U , �R = 1.0U . In both panels, U = 0.64 =
4�.

the spin physics entirely. This means that the subgap states
asymptotically approach the gap edge for extreme values of
ν, resulting in the well-known eye-shaped dispersion for the
YSR subgap states.

1. Symmetric case

First we revisit the symmetrical system with �L = �R,
E (L)

C = E (R)
C , and n(L)

0 = n(R)
0 = N . We show the energy dia-

gram as a function of ν in Fig. 13(a). In the p-h symmetric
point at ν = 1, the singlet subgap states are |ψg〉 and |ψu〉.
Deviation from the p-h symmetric point does not break
space-inversion symmetry, so the states retain their parity
throughout. While increasing ν toward ν = 2, the QD levels
fills up, transforming the first subgap state into a (N , 2,N )
configuration. The roles of the singlet and doublet sectors
switch, as now the singlet states can be formed without mus-
tering the Bogoliubov quasiparticles, while the doublet states
are forced to have odd occupation in the SC islands. The GS in
the doublet nref sector has a full QD level, which is required
by ν = 2 and enforced by U . The resulting odd occupation
in one of the SC islands results in the energy of this state
at � + EC above the lowest lying singlet state. In the singlet
sector, the first excitation consists of a broken Cooper pair in
one of the channels, which does not change the occupation
of the channels and therefore costs 2�. Decreasing ν has
the opposite effect of emptying the QD level. The subgap
states in the singlet nref + 1 sector are superpositions of the
strongly coupled singlet states and states with an empty QD
and an additional Cooper pair in the SC: a(|(N + 2, 0,N )〉 ±
|(N , 0,N + 2)〉) + b(|φL〉 ± |φR〉), where the plus sign ap-
plies to the first (gerade) and the minus sign is for the second
(ungerade) subgap state. With decreasing ν, the amplitude a
continuously increases at the cost of b as the YSR singlets
become less energetically favorable. Despite this, both states

remain in the gap throughout the ν range, keeping their ger-
ade/ungerade nature. It should be noted that when ν = 0, the
true GS is actually the singlet state in the nref − 1 sector, its
energy being equal to that of the nref + 1 GS at ν = 2. The
procedure of tuning the device to this point would therefore
require two steps: First, tuning the device into the GS at
ν = 2 would fill it with nref + 1 electrons. Next, one should
completely pinch off the device from the source and drain
electrodes by strongly raising the tunnel barriers and, finally,
tune the QD gate voltage to ν = 0. The pair of singlet sub-
gap states could then be probed by microwave spectroscopy
[65–68].

2. Nonsymmetric case

Next, consider the asymmetrical situation with E (L)
C � E (R)

C
and �L � �R. The energy diagram is shown in Fig. 13(b).
The charging energy of the QD and the right channel are
comparable and much larger than the charging energy of the
left channel. The energy cost of the unfavorable occupation of
the left channel is the relatively small factor of E (L)

C . Thus the
left channel tends to act as a reservoir for the rest of the sys-
tem, primarily optimizing the charge configuration of the QD
and the right channel. The subgap states have (N , 1,N + 1)
and (N + 2, 1,N − 1) configurations at ν = 1. By tuning the
gate voltage away from the particle-hole symmetric point, the
first subgap state assumes the (N + 2, 0,N ) configuration for
ν = 0 and (N , 2,N ) for ν = 2. Such configurations do not
allow for a second subgap state, as there is no local moment
on the QD. The first excitation is a broken Cooper pair in the
SC—there is a continuum of such excitations 2� above the
GS. The value of ν where the energy difference between the
two subgap states is minimal is again a bit below half -filling,
for the same reasons as when tuning n(R)

0 .
This is an optimal operation point for a YSR qubit, pointed

to by black arrows. The derivative of energy difference with
respect to all gate voltages has a root at this triple sweet-
spot point, making the system relatively insensitive to electric
noise, while the energy difference between the two subgap
states itself is minimal. For further comments on the use of
the system as a qubit, refer to the Discussion section.

C. Capacitive coupling

Capacitive coupling between component parts of the sys-
tem is typically present in experimental devices, including in
InAs QDs [41,69,70]. We include it in our model by augment-
ing it with terms that couple charge in parts of the system,

Vβ (n̂imp − ν)
(
n̂(β )

SC − n̂(β )
0

)
, (6)

for β = L, R. The strength of the coupling Vβ is bounded
from above by max(U/2, E (β )

C ), otherwise the system enters
a charge-ordered state [70]. An experimentally relevant value
is on the order of E (β )

C /5 [41]. We find that as long as the ratio
of Vβ/E (β )

C is equal for both channels and within reasonable
strength, the effect of capacitive coupling on the nature of
the subgap singlet states is minute, especially in the proposed
qubit regime.
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(a)

(b)

FIG. 14. Electric transition dipole moment D and quadrupole
moment Q. (a) hybridization strength �R dependence for parameters
as in Fig. 11(a). (b) QD gate voltage dependence for parameters as in
Fig. 13(b). The horizontal dashed line corresponds to the position of
the sweet spot in Fig. 13(b).

VII. ELECTRIC TRANSITION MOMENTS

Manipulation of the subgap states in the same charge sector
in the SC-QD-SC devices is possible by inducing microwave
transitions [71]. The electric field of a linear resonator typ-
ically couples to the electric dipole moment of the device
[72,73], but coupling to the quadrupole moment is also pos-
sible in a triple QD architecture [74]. To demonstrate that
manipulation of subgap states in the proposed device is pos-
sible, we calculate both quantities for the transitions between
the two subgap single states.

The matrix element for the transition dipole moment is
〈1|qr̂|0〉, where r̂ is the position operator. In the language
of our model with two pointlike SC islands at unit distance
from the QD, this is (up to a constant prefactor) equivalent to
〈1|(n̂L − n(L)

0 ) − (n̂R − n(R)
0 )|0〉. The n0 factors represent the

charge accumulated on the gate electrodes, but their contribu-
tion is nullified by the orthogonality of the subgap states. This
gives the expression for the transition dipole moment D =
〈1|n̂L − n̂R|0〉. Following the same arguments, the quadrupole
moment 〈1|qr̂2|0〉 is written as Q = 〈1|n̂L + n̂R|0〉. In Fig. 14,
the transition dipole and quadrupole moments for singlet sub-
gap states are shown. Figure 14(a) corresponds to states shown
in Fig. 11(a), while Fig. 11(b) corresponds to Fig. 13(b).
Both transition moments roughly follow the energy difference
between the two singlet states, exhibiting a peak when the
singlets are close in energy and the system is close to its sweet
spot. Both quickly decrease to zero when one of the states
merges with the continuum.

VIII. DISCUSSION

Practical quantum computing, especially one that would
be cryptographically relevant, requires systems with a large
number of qubits [75]. This need will drive increasing integra-
tion and scaling down of all constituent parts. Miniaturization
of devices based on superconducting regions will ultimately

lead to the use of SC islands, which will then become a
ubiquitous element. It thus appears pertinent to explore the
possible advantages that these will bring. In this paper, we
have studied one possible implementation that makes use of
two separate SC islands that bring about two separate spin-
singlet YSR subgap states which may be used to store one
qubit of information. We now comment on the relation of this
class of qubits to other known architectures [76,77] and on its
relative merits and downsides.

The YSR spin-singlet qubit may at first appear related
to the Andreev qubit in a Josephson junction [78,79]. The
Andreev qubit makes use of the ABSs in the even parity
subsector: the basis states consist of zero or double occu-
pancy of the ABS. This concept does not directly apply to
the YSR spin-singlet states: these cannot be doubly occupied
since only a single quasiparticle from a given SC island can
bind antiferromagnetically to the impurity to form a singlet
state. An Andreev qubit can be approximately modeled using
a noninteracting QD which correspond to the U → 0 limit
of our model. The higher-energy singlet subgap state of the
Andreev qubit at U → 0 is not connected to the higher-energy
singlet YSR state at U � �. Starting from the U = 0, Ec = 0
limit, increasing U or EC will rapidly drive the higher-energy
spin-singlet Andreev state into the continuum. Conversely, the
higher-energy YSR singlet will disappear in the continuum
when moving away from the U � �, Ec = 0 regime by de-
creasing U or Ec.

The YSR singlet qubit is actually more closely related to
the charge qubit in double QD systems [80]. The basis states
for the charge qubit correspond to the position of the single
electron in either of the two QDs. This is similar to YSR
singlet qubit states which likewise have different distributions
of the wave function in space. In this sense, the SI-QD-SI de-
vice is a variant of a charge qubit in a nonhomogeneous triple
QD system, however, with the qubit state encoded in a pair
of complex many-body states rather than in a single-particle
position basis. Depending on the operating point of the device
(parameter choice), the spatial structure of the YSR singlets
differs. For example, the regime E (L)

C < E (R)
C and �L < �R,

discussed in Sec. IV C, corresponds to a pair of singlet states
which mainly differ in the position in space of a single Cooper
pair. In this respect, at this operating point the YSR qubit
is actually very similar to the Cooper-pair box charge qubit
[81–84].

The YSR singlet qubits are relatively insensitive to mag-
netic field noise and do not require any magnetic flux tuning
through superconducting loops and are in this aspect similar
to spin singlet qubits [85,86]. The robustness with respect
to magnetic field weakly depends on the g factors of the
subsystems (QD versus SC islands). The Zeeman shifts of
spin-singlet states are, namely, proportional to the differences
in the g factors. Nevertheless, even in the case of different g
factors there exist operating points (such as the one discussed
above) which are largely insensitive to the field because both
states are Zeeman shifted in the same way, since they differ
mostly in the position of a Cooper pair (two-particle singlet
confined within a single SC island, insensitive to the magnetic
field to first order).

Finally, we mention the YSR qubits recently proposed in
Ref. [87]. Those are based on classical magnetic moments
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(e.g., on high-spin magnetic adsorbates with large magnetic
anisotropy) which have spontaneously broken spin symmetry
and are sensitive to external magnetic field. Another key dif-
ference is that our platform requires a single local moment
(QD) and two SCs (SC islands), while their proposal requires
two local moments (adatoms) and a singlet SC (surface of a
bulk SC). Beside making use of YSR subgap states, the two
approaches are thus quite different.

IX. CONCLUSION

We have explored the properties of the subgap states in
the system of an interacting QD coupled to two small su-
perconducting islands, focusing on the spin-singlet subspace.
We have uncovered regimes where two sub-gap singlets are
present deep in the gap with good separation from the contin-
uum states. The two states can never be degenerate, but their
energies can be tuned to obtain an energy difference suitable
for manipulation with microwaves pulses. The transitions are
facilitated by large electric dipole (and quadrupole) transi-
tion moments. Such devices could be built using present-day
technology. Using a third superconducting island, the scheme
could be generalized to qutrits.

This class of devices also has interesting properties in the
spin-doublet subspace: two Bogoliubov quasiparticles, one
from each superconducting island, could overscreen the im-
purity moment to produce an overscreened YSR state, a state
clearly distinct from the decoupled spin-doublet state.
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APPENDIX A: TRANSFORMATION TO
MIRROR-SYMMETRY-ADAPTED

(GERADE/UNGERADE) BASIS

1. Transformation of the BCS Hamiltonian

The mirror-symmetric problem of a QD described by the
single-impurity Anderson model that is coupled to two BCS

SCs with the same gap � and the same superconducting phase
φ maps to a single-channel problem using a simple transfor-
mation to the mirror-symmetry basis (gerade and ungerade
parity):

g†
i,σ = 1√

2
(c†

i,σ,L + c†
i,σ,R),

u†
i,σ = 1√

2

(
c†

i,σ,L − c†
i,σ,R

)
. (A1)

One finds

�c†
i,↑,Lc†

i,↓,L + �c†
i,↑,Rc†

i,↓,R + H.c.

= �g†
i,↑g†

i,↓ + �u†
i,↑u†

i,↓ + H.c. (A2)

There are no terms mixing the g/u SC modes, thus the unger-
ade SC fully decouples from the problem, resulting in a
single-channel problem, as is the case for normal-state con-
tacts [89]. At mathematical level this is trivial, but physically
it is less so. The cancellation of the mixed gerade/ungerade
terms is due to the mean-field decoupling of the effective
electron-electron interaction terms and implies the assumption
of complete coherence between the condensates in both SC
contacts.

If there exists a flux bias φ, one proceeds in two steps. First
one performs a gauge transformation

c̃†
i,σ,L = eiφ/4c†

i,σ,L,

c̃†
i,σ,R = e−iφ/4c†

i,σ,R,

d̃†
σ = eiφ/4d†

σ .

(A3)

One then performs a transformation to g/u basis in terms of c̃
operators:

g†
i,σ = 1√

2
(c̃†

i,σ,L + c̃†
i,σ,R),

u†
i,σ = 1√

2
(c̃†

i,σ,L − c̃†
i,σ,R). (A4)

One finds

�eiφ/2c†
i,↑,Lc†

i,↓,L + �e−iφ/2c†
i,↑,Rc†

i,↓,R + t
∑

σ

c†
i,σ,Ldσ + t

∑
σ

c†
i,σ,Rdσ + H.c.

= �g†
i,↑g†

i,↓ + �u†
i,↑u†

i,↓ +
√

2t cos(φ/4)
∑

σ

g†
i,σ dσ + i

√
2t sin(φ/4)

∑
σ

u†
i,σ dσ + H.c. (A5)

The QD is coupled to the g modes with the hybridization multiplied by a factor 2 cos2(φ/4) and to the u modes with a factor
2 sin2(φ/4) [90]. In the presence of phase bias, the u modes thus do not decouple. This leads to the second singlet YSR state
[63].

More generally, for an Anderson-model QD coupled to
an arbitrary number of BCS SCs with arbitrary hybridization
strengths and arbitrary gap parameters (amplitude and phase),

the BCS SCs can be integrated out, resulting in a single
hybridization function in the Nambu space. In this sense,
the problem is always effectively a single-channel problem.
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Nevertheless, the nontrivial structure of the hybridization ma-
trix as a function of frequency reflects the complexity of the
setup and can lead to, for example, the existence of multiple
singlet YSR states in the presence of flux biases.

2. Transformation of the Richardson model

Given that the Richardson model is equivalent to the BCS
model in the limit of large N , a similar procedure is possible.
Applying the even odd transformation Eq. (A1) to the number-
conserving pairing Hamiltonian,

N∑
i, j

c†
i,↑,Lc†

i,↓,Lc j,↓,Lc j,↑,L +
N∑
i, j

c†
i,↑,Rc†

i,↓,Rc j,↓,Rc j,↑,R, (A6)

one finds three types of terms. There are intrachannel pairing
terms,

u†
i,↑u†

i,↓u j,↓u j,↑ + g†
j,↑g†

j,↓gi,↓gi,↑, (A7)

the terms that pair levels between channels,

u†
i,↑u†

i,↓g j,↓g j,↑ + g†
j,↑g†

j,↓ui,↓ui,↑, (A8)

and, finally, the terms that mix single-particle states from both
channels:

u†
i,↑g†

i,↓u j,↓g j,↑ + g†
j,↑u†

j,↓gi,↓ui,↑, (A9)

u†
i,↑g†

i,↓g j,↓u j,↑ + g†
j,↑u†

j,↓ui,↓gi,↑. (A10)

FIG. 15. Probabilities of the |φL〉 and |φR〉 states for the lowest
lying singlet state in the zero-bandwidth approximation (N = 1).
The colored arrows point to the |A2| = |B2| points. E (L)

C = 0, various
E (R)

C . N = 1, U = 10, �L = 1.

The terms which couple u and g modes have a random phase
and give zero contribution in the limit of N → ∞. The two
channels therefore decouple in the Richardson model too.

APPENDIX B: MPO REPRESENTATION

Here we provide the MPO representation of the Hamilto-
nian studied in this paper. It is implemented with the impurity
in the middle of the system, with N sites on each side of it. An
alternative implementation is possible with the impurity as the
leftmost site. We obtain exactly the same results with both ap-
proaches and do not observe very significant differences in the
computational efficiency between the two implementations.
Leftmost site (1 denotes the first level in the left channel):

W1 = I
([

ε1 + E (L)
C

(
1 − 2n(L)

0

)]
n̂1 + (

g + 2E (L)
C

)
n̂1↑n̂1↓ vc†

1↑F1 vc†
1↓F1 − vc1↑F1 − vc1↓F1 gc1↓c1↑ gc†

1↑c†
1↓ 2E (L)

C n1
)
. (B1)

Here Fi = (−1)n is the local fermionic-parity operator, which gives a phase of −1 if there is an odd number of electrons on the
site. Charge operators are

n̂iσ = c†
iσ ciσ , n̂i =

∑
σ

n̂iσ . (B2)

Generic site in the left half of the system (i denotes a level in the left channel):

Wi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
[
εi + E (L)

C

(
1 − 2n(L)

0

)]
n̂i + (g + 2E (L)

C )n̂i↑n̂i↓ vc†
i↑Fi vc†

i↓Fi −vci↑Fi −vci↓Fi gci↓ci↑ gc†
i↑c†

i↓ 2E (L)
C n̂i

0 I 0 0 0 0 0 0 0
0 0 Fi 0 0 0 0 0 0
0 0 0 Fi 0 0 0 0 0
0 0 0 0 Fi 0 0 0 0
0 0 0 0 0 Fi 0 0 0
0 c†

i↑c†
i↓ 0 0 0 0 I 0 0

0 ci↓ci↑ 0 0 0 0 0 I 0
0 n̂i 0 0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B3)

Impurity site:

Wimp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 εimpn̂imp + Un̂imp↑n̂imp↓ −d†
↑F −d†

↓F d↑F d↓F 0 0 0
0 I 0 0 0 0 0 0 0
0 d↑ 0 0 0 0 0 0 0
0 d↓ 0 0 0 0 0 0 0
0 d†

↑ 0 0 0 0 0 0 0
0 d†

↓ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)
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Generic site in the right half of the system (i denotes a level in the right channel):

Wi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
[
εi + E (R)

C

(
1 − 2n(R)

0

)]
n̂i + (

g + 2E (R)
C

)
n̂i↑n̂i↓ 0 0 0 0 gci↓ci↑ gc†

i↑c†
i↓ 2E (R)

C n̂i

0 I 0 0 0 0 0 0 0
0 vc†

i↑ Fi 0 0 0 0 0 0
0 vc†

i↓ 0 Fi 0 0 0 0 0
0 vci↑ 0 0 Fi 0 0 0 0
0 vci↓ 0 0 0 Fi 0 0 0
0 c†

i↑c†
i↓ 0 0 0 0 I 0 0

0 ci↓ci↑ 0 0 0 0 0 I 0
0 n̂i 0 0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

Rightmost site (N denotes the last level in the right channel):

WN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
εN + E (R)

C

(
1 − 2n(R)

0

)]
n̂N + (

g + 2E (R)
C

)
n̂N↑n̂N↓

I
vc†

N↑
vc†

N↓
vcN↑
vcN↓

c†
N↑c†

N↓
cN↓cN↑

n̂N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

APPENDIX C: ZERO-BANDWIDTH CALCULATION OF
CHANGING NATURE OF SUBGAP STATES

The contribution of the left and right channel singlets
can be directly calculated in the zero bandwidth limit (the
SC islands are represented by a single level, N = 1), where
the singlet GS with two particles is |n = 2, i = 0〉 ≈ A|φL〉 +

B|φR〉. Figure 15 shows the �R dependence of the probability
amplitudes A and B. Colored arrows point to the |A| = |B|
points, where the state is an equal superposition of the left
and right channel singlets. When E (L)

C = E (R)
C = 0, the equal

superposition point occurs exactly at �L = �R, while it is
pushed toward larger �R with increasing E (R)

C .
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