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Yu-Shiba-Rusinov states, BCS-BEC crossover, and exact solution in the flat-band limit
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We study the subgap Yu-Shiba-Rusinov (YSR) states in the Richardson’s model of a superconductor with a
magnetic impurity for different electron pairing strengths from the weak-coupling Bardeen-Cooper-Schrieffer
(BCS) regime to the strong-coupling Bose-Einstein-condensate (BEC) regime. We observe that the effect of the
increasing pairing strength on the YSR excitation spectrum as a function of hybridization strength and impurity
onsite potential is only quantitative and, in fact, rather weak when the results are appropriately rescaled. We
furthermore show that the problem is analytically solvable in the deep BEC limit which is equivalent to flat-band
superconductivity. This exact solution can be related to a zero-bandwidth (ZBW) effective BCS mean-field
Hamiltonian where the superconductor is described by a single electron level with onsite pairing. The small
difference between the BCS and BEC regimes of the Richardson’s model explains the success of the simple
ZBW calculations for BCS mean-field Hamiltonians. A ZBW model requires only a suitable parameter rescaling
to become useful as a quantitative predictive tool for the full problem.
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I. INTRODUCTION

The pairing interaction is a key concept in nuclear and
solid-state physics, as well as in quantum many-body theory
in general. Pairing between fermions has been studied in bulk
materials [1–3], thin films [4], layered materials [5–7], atomic
nuclei [8–12], nuclear matter in neutron stars [13], cold atom
systems [14–19], nanoscopic metal grains [20–24], and ultra-
small superconducting islands [25,26]. When the pairing is
weak, the BCS mean-field approach works well [1]. When the
pairing is strong, all fermionic particles pair up into bosons,
then the bosons condense: this produces a BEC. Both regimes
are smoothly connected, despite the fact that the two limits are
physically quite different [14,19,27].

A magnetic impurity, such as a magnetic dopant or a semi-
conductor quantum dot (QD), is well known to induce subgap
states in the superconducting gap of a BCS superconductor
[28–39], which are known as the Yu-Shiba-Rusinov (YSR)
states in the limit of well-defined local moment. This raises the
questions about the persistence of the YSR states all the way
to the BEC limit and about the evolution of their properties
in this cross-over. These questions are pertinent because the
ground state and the elementary excitations in the two limits
have different properties [19].

In this work, we address this subject by coupling a mag-
netic impurity to a superconductor (SC) described by the
Richardson’s “picket-fence” pairing model, and tracking the
subgap states through the crossover from weak to strong
pairing. We show that the YSR states not only persist in
the cross-over from the BCS to the BEC regime, but do not
even change significantly at the quantitative level after an
appropriate rescaling of the input parameters and the resulting
energies. We also establish that a simple model based on the
flat-band limit of the Richardson’s model (RM) reproduces

the full phenomenology of an interacting QD coupled to a SC
island.

The subject of Shiba states across the BEC-BCS crossover
has been recently studied in the context of cold-atom systems
using a continuous-space Hamiltonian with a contact atom-
atom interaction, a static impurity with no internal quantum
dynamics, and making use of a mean-field level of approxi-
mation in all regimes [40]. In that model, the YSR state does
not exist for all parameters across the transition and a reentrant
behavior was found instead. Due to the significant differences
between the QD-SC setup and the impurity in atomic cloud,
these two Hamiltonians represent two very different problems
that cannot be compared in a sensible way. In this work we
address only the former problem.

The RM first appeared as a model of pairing forces in
nuclear physics [11,41,42] and was later reintroduced as a
description of nanoscale SC grains [24,43–45]. The SC is
modeled as a set of equidistant energy levels representing the
time-reversal conjugate single-particle states with all-to-all
pairing interaction. While the RM exactly reduces to a BCS
model in the thermodynamic limit, it has important advan-
tages for smaller systems. Namely, it does not use the mean-
field approximation and thus conserves particle number. This
makes it a more suitable choice for the modeling of meso-
scopic SC systems. Unlike BCS, it is also applicable at all
coupling strengths [46] which is critical in the present work.

The RM is integrable and analytically solvable in terms
of hard-core bosons [11,42], but coupling it with an im-
purity level introduces pair-breaking processes and breaks
integrability. We have previously found a representation of
the QD-SC model as a matrix product operator (MPO),
allowing us to use density matrix renormalization group
(DMRG) [47–49] to obtain exact solutions for a QD coupled
to one [50] or two [51] SC channels. With this method we
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obtain exact properties of a magnetic impurity coupled to an
interacting SC with no parameter restrictions, from the BCS
to the BEC limits, for all system sizes including ultrasmall SC
islands. Good agreement to experiment confirms that this is a
suitable description of real systems [52].

This article is organized as follows. In Sec. II we present
the Hamiltonian and the methods that permit its numerical
solution. In Sec. III we present the results for the evolution
from the BCS to the BEC limit. In Sec. IV we present an
exact solution of the model in the limit of a completely flat
band (equivalent to the deep BEC regime). In Sec. V we
discuss how this solution can also be considered as arising
from a ZBW BCS model which leads to exactly the same
matrix representation. We conclude in Sec. VI with a per-
spective on the possible extensions of the flat-band model,
e.g., to a two-channel (Josephson junction) situation. Some
lengthy derivations are presented in Appendices A–C. In the
Supplemental Material we provide Mathematica notebooks
with a computer-algebra verification of all mathematical state-
ments presented in this work [53]. The full source code of the
DMRG solver is available on a public repository, including
a large set of examples [54]. We also provide the input files
for the solver and a corresponding Mathematica notebook
with an exact calculation of the ground state energies in the
flat-band limit [53]; this reference calculation is discussed in
Appendix D.

II. MODEL AND METHOD

The Richardson’s model is [24,50]

H =
∑

iσ

εic
†
iσ ciσ − G

∑
i, j

c†
i↑c†

i↓c j↓c j↑, (1)

where c†
iσ creates a particle in the level i with spin σ ∈ {↑,↓}

and εi are the energy levels spanning the interval [−D : D]
spaced by d = 2D/L, where the half-bandwidth D ≡ 1 sets
the energy scale, and L is the total number of levels. The
indexes i and j range from 1 to L. The coupling G can also be
written as

G = αd = D
2α

L = g

L , (2)

where we have introduced α as the dimensionless strength of
the pairing interaction, and g as the corresponding dimension-
full strength; α and g are intensive quantities.

The BCS to BEC limiting process can be implemented in
two equivalent ways: by increasing the coupling G at constant
bandwidth D, or by decreasing the bandwidth D at constant
coupling G. We opt for the second possibility in this work. We
implement this by appropriately rescaling the coefficients εi in
the kinetic-energy term of the SC Hamiltonian. We introduce
γ as a parameter that multiplies the kinetic energy term of
the Hamiltonian. Going to the BEC limit thus corresponds to
taking the flat-band limit (γ → 0), i.e., omitting the kinetic-
energy terms from the Hamiltonian.

We describe the coupling of the interacting QD to the SC
using an Anderson impurity Hamiltonian [50,55–57]:

HQD = εn̂ + Un̂↑n̂↓ + v
1√
L

∑
i,σ

(c†
i,σ dσ + d†

σ ci,σ )

= εn̂ + Un̂↑n̂↓ + v
∑
i,σ

( f †
σ dσ + d†

σ fσ ), (3)

where we have defined the bath orbital f through

fσ = 1√
L

L∑
i=1

ci,σ . (4)

The QD filling is controlled through the occupancy parameter
ν defined via

ε = U (1/2 − ν).

The particle-hole symmetric point of the QD corresponds to
ε = −U/2, i.e., ν = 1. The hybridization is quantified using
� = πρv2 with the density of states

ρ = 1/2D = 1/dL.

We use the DMRG to find the ground state and a few lowest
excited states in symmetry sectors with conserved particle
number n and z-component of spin sz. In these numerical
calculations we typically choose n close to half filling with
sz = 0 for even n and sz = 1/2 for odd n. The method is,
however, applicable for any filling, including the dilute limit
with low occupancy. We also note at this point that we will
be using the terms BCS and BEC mostly as labels for weak-
coupling and strong-coupling limits of the Richardson model
of a superconductor, and that in this work we are focusing
on the impurity effects rather than the physics of the clean
superconductor itself; the latter has been reviewed in a number
of works [24,43,44,46,58].

The Hamiltonian is written in MPO form with 9 × 9 ma-
trices [50]. The DMRG results are obtained with system size
L = 100, with maximal MPS matrix dimension of 2000 and
the energy convergence criterion set at δ = 10−8. System sizes
up to L = 2000 with δ = 10−12 are realistically achievable,
but increasing the system size produces marginal gains. Using
L � 30 already gives good results at much smaller computa-
tional expense. We set the pairing strength α = 0.4 to ensure
that an appropriate amount of energy levels participate in
pairing even when they span the entire energy range [−1 : 1].

The SC-QD models can also be reliably solved by the
numerical renormalization group [38,59–67] as well as with
continuous-time Quantum Monte Carlo (QMC) using U [68]
and hybridization [69–72] expansion. These methods require
a weakly interacting bath and are thus limited to the mean-
field BCS description of superconductivity. The RM without
the impurity has been treated by QMC in the canonical ensem-
ble [73], and its strong coupling limit has been investigated by
expanding the Richardson’s solution in powers of 1/α using
pseudospin operators [74]. Our DMRG approach is currently
the only reliable technique to address the full interacting prob-
lem in all parameter regimes.

In the flat-band limit (γ = 0, i.e., D = 0 or εi ≡ 0), two
renormalization processes associated with the kinetic energy
of band electrons no longer occur. These are the renormal-
ization of the exchange interaction from the bare Kondo
exchange coupling JK = 8�/πρU to the scale of the expo-
nentially lower Kondo temperature TK = exp(−1/ρJK ), and
the renormalization of the pairing interaction from the bare
scale of attractive coupling g to the scale of the exponen-
tially lower SC gap � = exp(−1/ρg). Both renormalization
processes have exactly the same origin: the kinetic energy
(dispersion) of the conduction band electrons.
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FIG. 1. Singlet-doublet energy difference EYSR = ES − ED as a function of the hybridization � for a range of bandwidths γ . Energy
difference ES − ED is expressed either in (a) absolute units or (b), (c) rescaled by the SC gap �. In panel (c), the horizontal axis is furthermore
rescaled so that the singlet-doublet transition points coincide. The parameters are α = 0.4, strong electron repulsion U/�0 = 40 (left column)
and moderate repulsion U/�0 = 5 (right column), where �0 ≈ 0.16 is the gap at γ = 1, and particle-hole symmetric tuning ν = 1. The results
have been corrected for the finite-size effects as described in Ref. [50].

III. NUMERICAL RESULTS FOR THE BCS-BEC
CROSS-OVER

The flattening of the band (and the BCS-BEC crossover)
correspond to a variation of the bandwidth rescaling param-
eter from γ = 1 to γ = 0. In this section we present the
evolution of the subgap spectra in this crossover.

A. Excitation energies

Figure 1 shows the excitation energy of the subgap state
at the particle-hole symmetric point (ε = −U/2) as a func-
tion of the hybridization strength �. Increasing � strengthens
the exchange coupling JK between the impurity spin and the
quasiparticles: JK = 8�/πUρ [75]. This leads to the forma-
tion of the subgap singlet (Yu-Shiba-Rusinov) bound state
which detaches from the edge of the continuum of Bogoli-
ubov states [33,35,59,62,76]. As � is increased, the subgap
descends deeper in the gap and eventually becomes the new
ground state of the system; this is known as the doublet-singlet

quantum phase transition and occurs when the characteristic
scale of spin-flip processes (Kondo temperature) becomes of
the same order as the superconducting gap [32,33,59,60,63].
We consider two cases, U/�0 = 40 and U/�0 = 5, where �0

is the SC gap in the γ = 1 limit. The first case is representative
of the large-U limit where the impurity is a pure exchange
scatterer (Kondo limit) and the subgap states are well-defined
YSR states, while the second is a generic situation where the
singlet subgap states have a mixed character due to a stronger
proximity effect which admixes states of zero and double
impurity occupancy. The first row in Fig. 1 shows the results
without any rescaling. With � increasing from zero, we see the
YSR singlet state detach from the continuum of Bogoliubov
states and cross the zero energy-difference line at � = �c at
which point it becomes the ground state of the system. We thus
reproduce the well-known results for the qualitative evolution
of the subgap states as a function of � for all bandwidths γ

of the supercondctor. It may be remarked that on one side of
the cross-over the quantum phase transition is controlled by
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FIG. 2. (a) Bandwidth γ dependence of the transition point
(�/U )c. The inset shows the rescaling factor for the hybridization
strength that would be required to obtain equivalent results. (b) Pair-
ing strength �̄ dependence on γ . It measures the proportion of levels
which contribute in pairing, with all levels contributing equally when
�̄ = 1/2.

the ratio of renormalized quantities TK/�, while on the other
side it is controlled by the ratio of unrenormalized parameters
JK/g.

To make a more definite statement on the quantitative
effects of varying bandwidth γ , we now rescale the results
in two steps: (1) we rescale the energies in terms of the SC
gap at given γ (second row), (2) we furthermore rescale the
�/U axis so that the singlet-doublet transition points for all γ

coincide (third row). These fully rescaled results demonstrate
a reasonably good overlap, showing that during the BCS to
BEC crossover the changes in the YSR excitation energy are
only quantitative and actually rather small. This is one of the
key results of this work.

Figure 2(a) presents the transition point (�/U )c extracted
from Fig. 1. The hybridization rescaling factor used in the
bottom row of Fig. 1 is shown in the inset. By decreasing
the bandwith γ we allow more levels to participate in hop-
ping processes resulting in larger effect of hybridization �.
The transition point thus moves to smaller value of � with
decreasing bandwidth γ . It should be, however, noted that the

FIG. 3. Gate-voltage dispersion of the subgap states for two
values of hybridization: (a) �/U = 0.05, (b) �/U = 0.2. Other
parameters are α = 0.4, U/�0 = 40. The frequencies are rescaled
by �.

change is rather modest, by approximately 30% for the chosen
parameter set.

To better understand the effects of the bandwidth reduc-
tion, we plot in Fig. 2(b) the γ dependence of the pairing
correlations

∑
i uivi, where ui = 〈ci↓ci↑c†

i↑c†
i↓〉1/2 and vi =

〈c†
i↑c†

i↓ci↓ci↑〉1/2, for a range of pairing interaction strengths
α. This sum measures the proportion of levels that contribute
to pairing, with all levels contributing equally in the limiting
case of saturated sum

∑
i uivi = 1/2. Similarly as observed

in Fig. 2(a), the decrease in bandwidth allows more levels to
contribute in pairing processes, strengthening the correlations.
Increasing the pairing strength α at given bandwidth results in
qualitatively the same crossover as decreasing the bandwidth
γ , illustrating the two possible ways of probing the crossover
between the weak-coupling and strong-coupling (BEC-BCS)
regimes. The pairing correlations in the zero bandwidth limit,
where all curves converge to the saturated value for the half-
filled band, are further discussed in Sec. IV A 1.

The subgap states in QDs coupled to SCs can also be tuned
by the gate voltage that shifts the impurity energy level ε.
The further away from the half-filled special point (ν = 1) the
QD is tuned, the less magnetic it behaves: far from ν = 1 the
subgap state is expected to merge back with the continuum.
In Fig. 3 we show the gate-voltage dispersion for two fixed
values of �/U , on either side of the singlet-doublet transition
value �c at ν = 1, so that in one case we find the typical
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(a)

(c)

(b)

(d)

FIG. 4. Impurity occupation probabilities P1 and P02 versus binding energy EB = ES − (ED + �) for different values of bandwidth γ for
the singlet (top) and doublet (bottom) ground state. EB is the energy gain of the subgap singlet state compared to the first excited (decoupled)
singlet state and is rescaled by the optical gap � for each γ . The pairing interaction strength is α = 0.4.

YSR ring (eye-shaped dispersion) and in the other Gaussian
shaped curves. We again observe that we may reproduce the
well-known results for the evolution of the subgap states as a
function of ε for all bandwidths γ of the superconductor. On
quantitative level, after scaling the energies by the gap as in
the present plot, we find a good overlap which could be further
improved by adjusting the � values as described above.

B. Subgap state properties

In addition to the approximate overlap of the YSR state
energies, we also find a high degree of similarity in the state
properties across the crossover. As an example, in Fig. 4 we
plot the probabilities that the impurity level is singly occupied
(P1) or doubly occupied/empty (P02) versus binding energy
EB = ES − (ED + �). These are obtained from the reduced
density matrix for the impurity site and contain important
information about the nature of the states.

In the top row we plot the singlet ground state. For the
singlet YSR state we expect P↑ = P↓ = 1/2 and thus P1 = 1.
With increasing EB (by increasing the hybridization �) the
local magnetic moment of the impurity level decreases due
to larger charge fluctuations. P02 measures the contribution
of the proximitized ABS state, which becomes dominant in
the limit of large �/U . Figure 4(a) shows that this behavior
persists throughout the BCS-BEC transition. In this case with
U � � we find good overlap of the curves. The situation
away from this limit, where U ≈ �, is shown in Fig. 4(b).
Here the magnitude of charge fluctuations depend not only
on �/U but also on �/�. The fact that two different scales
control the charge fluctuations decreases the quality of the
collapse, but the qualitative agreement for different γ remains.

The bottom row shows the doublet ground state, where
the mechanism of changing state character is a bit different.

Increasing EB increases the admixture of the excited doublet
state, which is identical to the YSR singlet with an additional
free quasiparticle in the bath. This excited state transforms
from a YSR-like singlet to an ABS-like proximitized state
(as discussed in the previous paragraph), resulting in the de-
crease of P1, which is, however, more gradual compared to the
singlets. This is most obvious when comparing the two cases
with smaller U in Figs. 4(b) and 4(d).

We note that we find a similar qualitative agreement for
different γ for many state properties. This is an important
result in its own, as it implies that it is possible to use the
flat-band solutions to investigate the nature of the low energy
states in realistic QD–SC systems.

IV. EXACT SOLUTION FOR THE FLAT-BAND LIMIT

In the following we show that the flat-band limit is analyt-
ically solvable even in the presence of a magnetic impurity, in
the sense of being reducible to numerical diagonalizations of
very small matrices. This model provides a conceptually clear
picture of all phenomena occurring in ultrasmall SCs cou-
pled to quantum dots and provides exact benchmark results
for testing other approaches. The method works for arbitrary
parameter values and can be applied for any band filling, from
the dilute limit to half filling.

A. Eigenstates of the superconductor

We take the εi ≡ 0 limit of the RM (also known as the
“seniority model” in the context of nuclear physics [77]) and
write the SC part of the Hamiltonian as

H = − g

L
∑
i, j

c†
i↑c†

i↓c j↓c j↑ = − g

L
∑
i, j

A†
i A j, (5)
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where Aj = c j↓c j↑ are the hard-core boson operators with the
commutation rule:

[Ai, A†
j ] = δi j (1 − n̂i ), (6)

where n̂i = ∑
σ c†

iσ ciσ is the level occupancy operator. The
following relations also hold:

A2
i ≡ 0,

(A†
i )2 ≡ 0,

A†
i Ai = P̂2,i = n̂i↑n̂i↓,

AiA
†
i = P̂0,i = 1 − n̂i + n̂i↑n̂i↓. (7)

The operators P̂0,i and P̂2,i are the projectors on the subspace
with occupancy 0 or 2 on level i.

The seniority model can be diagonalized making use of its
SU(2) symmetry [77–79]. Here we will construct the eigen-
states by exponentiating the creation operator for electron
pairs and obtain eigenvalues directly by algebraic means.

The Hamiltonian H is not particle-hole (p-h) symmetric.
The symmetry can be restored by adding a potential energy
term:

H̃ = H + ε̃
∑

i

n̂i, (8)

with

ε̃ = g

2L = αd

2
= α

L ,

using D ≡ 1 as energy unit.
Let U be the set of “unblocked levels” (those occupied by

either 0 or 2 electrons). The blocked levels B (those with occu-
pancy 1) do not participate in pairing and they fully decouple
from the problem in the absence of an impurity, thus in this
subsection all the sums that follow are constrained to the set
of unblocked levels. We will also use the same symbol U to
denote the number of unblocked levels, since this leads to no
ambiguity. In the absence of quasiparticles no level is blocked,
B = ∅, and we have U = L.

We introduce the equal-weight linear combination of hard-
core operators corresponding to all unblocked levels,

B = 1√
U

U∑
i

Ai, (9)

so that

H = −g
U
LB†B + Hblocked. (10)

Dropping the blocked subspace from this point on, the full
Hamiltonian including the p-h symmetry restoring energy
shift is thus

H̃ = −g
U
LB†B + α

L N̂, (11)

where

N̂ =
U∑
i

n̂i (12)

is the total number of electrons in the unblocked subset of
levels (i.e., the energy of unpaired electrons in the blocked
levels is not included).

The eigenstates for M Cooper pairs in the U levels are

�L,U
M = NM |M〉 = NM (B†)M |0〉, (13)

where |M〉 = (B†)M |0〉 and NM is a normalization factor (see
Appendix B). In the following, the superscripts L,U in �L,U

M
will be dropped when no ambiguity may result; when a single
superscript is indicated, it corresponds to U .

We have H�0 = 0 and H�1 = −g(U/L)�1. General
eigenvalues can be computed by recursion (see Appendix A),
finding

H |M〉 = −g(U/L)cM |M〉, (14)

with

cM = (1 + U − M )M

U . (15)

The ground-state energy of a system of size L with U un-
blocked levels containing M Cooper pairs is thus

EL,U
M = −2α

(1 + U − M )M

L , (16)

while the shifted eigenvalues (corresponding to H̃ ) are

ẼL,U
M = −2α

(U − M )M

L . (17)

The interpretation of this expression is very simple. Each of
the M Cooper pairs resonates with the U − M empty levels in
the system, each combination contributing 2α/L = G to the
total energy. We note that Ẽ does not include the energy of
single electrons in the blocked levels, which is not included in
Eq. (11). We therefore define the total energy Ê as

ÊL,U
M = ẼL,U

M + α

L (L − U )

= α
−2(U − M )M + L − U

L .

For half filling, n = L and M = L/2, and one has for
U =L

ẼL,L
L/2 = −α

L
2

≡ E . (18)

Also, we find

ẼL,L
L/2+1 = E + 2α

L , ẼL,L
L/2+2 = E + 8α

L , . . . , (19)

thus additional Cooper pairs have an energy cost of order 1/L.
In the thermodynamic limit (L → ∞), the ground state would
be macroscopically degenerate, as is the case in bulk SCs.

We now consider a single quasiparticle in the system, i.e.,
we make one of the L levels singly occupied, so that U =
L − 1. The energy cost in the n = L + 1 charge sector is

Eqp,+ = (
ẼL,L−1
L/2 + ε̃

) − E =
(

1 + 1

L

)
α. (20)

and in the n = L − 1 charge sector it is

Eqp,− = (
ẼL,L−1
L/2−1 + ε̃

) − E =
(

1 + 1

L

)
α. (21)
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In the equal-charge (n = L) sector, the lowest excitation con-
tains two quasiparticles. Its energy is(

ẼL,L−2
L/2−1 + 2ε̃

) − E = 2α. (22)

The cost of a quasiparticle excitation in flat-band supercon-
ductors is equal to the bare pairing interaction [10,80,81].

1. Pairing strength

The strength of pairing correlations may be quantified by
evaluating the following correlators [58]:

v̄i = 〈c†
i↑c†

i↓ci↓ci↑〉1/2 = 〈A†
i Ai〉1/2,

ūi = 〈ci↓ci↑c†
i↑c†

i↓〉1/2 = 〈AiA
†
i 〉1/2,

�̄ = g

L
∑

i

v̄iūi,

�̄′ = g

L
∑

i

(〈ni↑ni↓〉 − 〈ni↑〉〈ni↓〉)1/2. (23)

v̄i is the amplitude to find a pair of states occupied, while ūi

is the amplitude to find a pair of states empty. If the system
is homogeneous, then all amplitudes are the same, v̄ ≡ v̄i and
ū ≡ ūi, so that

�̄ = gv̄ū. (24)

Both �̄ and �̄′ reduce to �BCS in the thermodynamic limit
[43].

At half filling, the results is obviously v̄2 = ū2 = 1/2,
because there is probability 1/2 to find any given level unoc-
cupied and the same probability to find it doubly occupied,
and by construction it cannot be singly occupied, since no
level is blocked. Thus,

�̄ = g

2
= α. (25)

In general, the amplitudes v̂i and ûi are related, since A†
i Ai =

A†
i Ai − (1 − n̂i ), thus

v̄2 = ū2 − 〈�M |(1 − n̂i )|�M〉 = ū2 − 1 + 2M

U . (26)

In the subspace where all levels are either unoccupied or
doubly occupied, we also have v̄2 + ū2 = 1. Then it follows
immediately that

v̄2 = M

U , ū2 = U − M

U , �̄ = 2α

√
M(U − M )

U . (27)

The other estimate, �̄′, can also be easily computed:

�̄′ = g

LU
(M

U − M

U
M

U
)1/2

, (28)

because in a homogeneous system 〈n̂i↑n̂i↓〉 = 〈P̂2i〉 = M/U
and 〈niσ 〉 = M/U . At half filling, this yields

�̄′ = α.

In this flat-band model, the pairing correlations are thus
directly proportional to the coupling-strength α. This is a
known feature of strong-coupling SC systems [10,80,81]. The
exponential reduction in the standard weak-coupling BCS the-
ory is a consequence of the finite width of the electron band.

B. YSR states for a Kondo impurity

We now include a magnetic impurity into consideration.
First we consider the case of a pure exchange scatterer and
take the large-U limit of the impurity Hamiltonian at ν = 1 to
obtain an effective Kondo Hamiltonian [75,82]:

HQD = J

L
∑
i, j

S · si, j, (29)

where the Kondo exchange coupling is

J = 8v2/U = 16

π
(�/U ), (30)

and the interlevel spin operators are defined as

si, j = 1
2 c†

i,ασα,βc j,β . (31)

Here σ = {σ x, σ y, σ z} is a vector of Pauli matrices and the ex-
pression is summed over repeated spin indexes α and β. Note
that in this discrete model � does not have the significance
of a level width, but it nevertheless quantifies the coupling
strength. Equivalently, we may write

HQD = JS · s, (32)

with s the spin of an electron in the orbital f , see Eq. (4),

s = 1
2 f †

α σα,β fβ. (33)

For half filling with M = L/2 Cooper pairs (assuming even
L) and one electron in the impurity level (odd total number
of electrons n = L + 1, i.e., spin-doublet sector), the impu-
rity remains entirely decoupled from the SC in the ground
state. The reason is that the product state ψ = |M〉 ⊗ |σ 〉 is
an eigenstate of HQD. First we note that the state |M〉 is an
eigenstate of ŝz with ŝz|M〉 = 0. We thus only need to consider
the transverse S−s+ terms. This operator is composed of pairs

c†
i↑c j↓ + c†

j↑ci↓. (34)

We have

[c†
i↑c j↓, A†

j ] = −c†
i↑c†

j↑, [c†
j↑ci↓, A†

i ] = c†
i↑c†

j↑. (35)

This leads to a cancellation for any i �= j pair. Furthermore,
the diagonal i = j terms are trivially zero due to Pauli exclu-
sion principle. Thus, we have s+|M〉 = 0, showing that |M〉 is
indeed an eigenstate.

The same commutation relations also establish that the
pure exchange interaction preserves the decoupling between
the blocked (singly occupied) levels B and the unblocked
(zero or double occupancy) levels U . Thus, the Hamiltonian
in the subspace of B blocked levels is

HB = JS · s, (36)

where s is now constrained only over the blocked levels. This
is an exact statement. The ground state in the even occupancy
n = L + 2 sector results from the interaction between the
single quasiparticle and the impurity spin (i.e., the YSR sin-
glet state). This is clearly a simple two-body problem of two
spins coupled by an isotropic exchange interaction, with one
singlet eigenstate at energy −3/4J and one triplet eigenstate at
energy +1/4J . The creation of the quasiparticle has an energy
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cost of (1 + 1/L)α. The excitation energy is thus

EYSR =
(

1 + 1

L

)
α − 3J

4
. (37)

The YSR singlet binding energy is

�E = Eqp,+ − EYSR = 3

4
J = 12

π
(�/U ). (38)

There is a YSR triplet state in the “continuum” with an energy
surplus of 1/4J .

C. YSR states for an Anderson impurity

At finite U , an electron from a doubly occupied bath level
can hop on the impurity site, and an electron can hop from
the impurity site to an unoccupied bath level. The decoupling
between the blocked levels B and the unblocked levels U is
lost: the subsectors mix. We need to separately discus the
cases with different fermionic parity (and consequently total
spin).

1. Odd total number of electrons (spin-doublet)

We first consider the case with an odd total number of
electrons. The z component of total spin is a conserved quan-
tity; we will work in the sz = 1/2 subspace. The following
normalized states are coupled by the hopping term:

ψ0,b = |0〉 ⊗ c†
b↑�

L\b
M ,

�1 = |1〉 ⊗ �L
M,

ψ1,bb′ = |1〉 ⊗ c†
b↑c†

b′↓�
L\b,b′
M−1 ,

ψ2,b = |2〉 ⊗ c†
b↑�

L\b
M−1. (39)

The ket |i〉 represents the impurity state with i electrons,
defined as |1〉 = d†

↑|0〉 and |2〉 = d†
↑d†

↓|1〉. In ψ0,b and ψ2,b

the level b is blocked; here 1 � b � L. The notation L\b
in the superscript denotes that the set of unblocked levels U
encompasses all levels except b, while the subscripts represent
the number of Cooper pairs. In a similar vein, in ψ1,bb′ two
levels are blocked. We note that states with two quasiparticles
with equal spin in the superconductor (and opposite spin in
the QD, such that the total spin is S = 1/2 and Sz = 1/2) do
not couple with the subset of states in Eq. (39) in the flat-band
limit.

We now form normalized equal-weight superpositions of
ψ0,b and ψ2,b,

�0 = 1√
L

L∑
b=1

ψ0,b, �2 = 1√
L

L∑
b=1

ψ2,b,

as well as

� ′
1 = 1√

L(L − 1)

∑
b�=b′

ψ1,bb′ .

Note that the double sum is over all L so the two quasiparticles
form a singlet state. For large L this simplifies to

� ′
1 ≈ 1

L
∑
b�=b′

ψ1,bb′ .

FIG. 5. Schematic representation of the states coupled in the
doublet subspace. In the flat-band limit, no other states couple with
this subset. Left line: QD level. Right lines: SC levels. Quasiparticles
(singly occupied SC levels) represent superpositions of states where
the single electron occupies any of the superconductor L levels.
Green arrows represent the hopping process resulting in the next state
(counterclockwise).

The energies of the doublet states � are

ED
0 = ẼL,L−1

M + ε̃ − ε,

ED
1 = ẼL,L

M ,

ED′
1 = ẼL,L−2

M−1 + 2ε̃,

ED
2 = ẼL,L−1

M−1 + ε̃ + ε + U . (40)

Here we included the energy shifts ε̃ (hence we use energies
Ẽ ), which are important for this consideration, and we have
subtracted ε. The superscript D denotes that these are energies
in the spin-doublet subspace.

To compute the matrix elements, we make use of an ex-
pression derived in Appendix B after setting M = L/2:

f †
σ �L

L/2 = 1√
2

1√
L

∑
b

c†
b,σ �

L\b
L/2 , (41)

thus f †
σ dσ�1 = (1/

√
2)�0. An analogous expression can be

obtained for fσ�L
L/2, giving d†

σ fσ�1 = (1/
√

2)�2. In a simi-
lar way we obtain all other matrix elements.

We obtain a four-level problem with the Hamiltonian in the
orthonormal basis {�1,−� ′

1, �0, �2} that can be expressed in
the large-L limit and at half-filling as

HD
eff =

⎛
⎜⎜⎝

ED
1 0 v/

√
2 −v/

√
2

0 ED′
1 v/

√
2 v/

√
2

v/
√

2 v/
√

2 ED
0 0

−v/
√

2 v/
√

2 0 ED
2

⎞
⎟⎟⎠. (42)

The schematic representation of this Hamiltonian is shown in
Fig. 5. The full expression for HD

eff for arbitrary L and M with
exact matrix elements is given in Appendix D. Close to half
filling and for small to moderate v, the state � ′

1 is a highly
excited states and plays little role (it admixes in the ground
state wavefunction only as a v4 correction). We may thus drop
the second row and second column in the matrix in Eq. (42)
and write

HD
eff =

⎛
⎝ ED

1 v/
√

2 −v/
√

2
v/

√
2 ED

0 0
−v/

√
2 0 ED

2

⎞
⎠. (43)

The eigenenergies can be obtained from the cubic roots. At
half filling in the particle-hole symmetric point (ε = −U/2)
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FIG. 6. Ground state eigenenergies in the flat-band limit for U =
10α, specifically α = 0.1 and U = 1 in units of D, L = 50. Full
line in both panels: DMRG results. (top) Odd-parity (spin-doublet)
sector with n = L + 1, sz = 1/2. Dashed line: lowest eigenvalue
of the Hamiltonian in Eq. (45). (bottom) Even-parity (spin-singlet)
sector with n = L + 2, sz = 0. Dashed line: lowest eigenvalue of the
Hamiltonian in Eq. (55).

the problem simplifies even further. We then have

ED
0 = ED

2 = −α
L
2

+ α + U/2 ≡ ED
02,

ED
1 = −α

L
2

. (44)

The eigenvector (0,1,1) with eigenvalue ED
02 decouples. The

ground state can then be obtained by diagonalising the 2 × 2
matrix

HD
eff =

(
ED

1 v

v ED
02

)
. (45)

Reference calculations demonstrating that the method is exact
are presented in Appendix D. Even using the approximate
expressions from this section which are strictly correct only
in the L → ∞ limit, we find excellent agreement with the
DMRG results even at moderate L = 50, see Fig. 6 (top panel)
where we plot the lowest eigenvalue of HD

eff using the dashed
line and the reference results as full line.

2. Even total number of electrons (spin-singlet)

We now consider the case with an even total number of
electrons, specifically n = 2M + 2, in the spin singlet state.
We first enumerate all relevant states in the subspace with sz =
0. There are two states with single occupancy of the impurity,
while in the sectors with nimp = 0 and nimp = 2 we need to
include two types of states, those with no quasiparticles and

those with two quasiparticles:

�0 = |0〉 ⊗ �L
M+1,

ψ ′
0,bb′ = |0〉 ⊗ c†

b↑c†
b′↓�

L\b,b′
M ,

ψ1,b,σ = |σ 〉 ⊗ c†
bσ̄ �

L\b
M ,

�2 = |2〉 ⊗ �L
M,

ψ ′
2,bb′ = |2〉 ⊗ c†

b↑c†
b′↓�

L\b,b′
M−1 ,

(46)

with energies

ES
0 = ẼL,L

M+1 − ε,

ES
0

′ = ẼL,L−2
M + 2ε̃ − ε,

ES
1 = ẼL,L−1

M + ε̃,

ES
2 = ẼL,L

M + ε + U,

ES
2

′ = ẼL,L−2
M−1 + 2ε̃ + ε + U . (47)

For one electron beyond half filling (i.e., for M = L/2) and
ε = −U/2, this yields

ES
0 = −α

L
2

+ U/2 + 2α

L ,

ES
0

′ = −α
L
2

+ 2α + U/2 + 2α

L = ES
0 + 2α,

ES
1 = −α

L
2

+ α + α

L ,

ES
2 = −α

L
2

+ U/2,

ES
2

′ = −α
L
2

+ 2α + U/2 = ES
2 + 2α. (48)

The difference between ES
0 and ES

2 is a O(1/L) correction,
ES

0 − ES
2 = 2α/L and vanishes in the thermodynamic limit.

We now form normalized equal superpositions of ψ ′
0,bb′ and

ψ ′
2,bb′ states:

� ′
0 = 1√

L(L − 1)

∑
b�=b′

ψ ′
0,bb′ ,

� ′
2 = 1√

L(L − 1)

∑
b�=b′

ψ ′
2,bb′ ,

(49)

we can be simplified in the L → ∞ limit to

� ′
0 ≈ 1

L
∑
b�=b′

c†
b↑c†

b′↓�
L\b,b′
M ,

� ′
2 ≈ 1

L
∑
b�=b′

c†
b↑c†

b′↓�
L\b,b′
M−1 .

These are spin-singlet states. Furthermore, we make a normal-
ized spin-singlet combination of ψ1,b,σ :

�1 = 1√
L

L∑
b=1

1√
2

(ψ1,b,↑ − ψ1,b,↓)

= 1√
L

L∑
b=1

1√
2

(|↑〉 ⊗ c†
b,↓ − |↓〉 ⊗ c†

b,↑)�L\b
M . (50)
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FIG. 7. Schematic representation of the states coupled in the sin-
glet subspace. In the flat-band limit, no other states couple with this
subset. The green arrows represent the hopping processes relating
states to �1.

Making use of Eq. (41) at half-filling (M = L/2), this can also
be expressed as

�1 ≈ (|↑〉 ⊗ f †
↓ − |↓〉 ⊗ f †

↑ )�L
M . (51)

We note that no spin-triplet states are included here.
To find the matrix elements, we make use of the result from

Appendix B in the large L limit:

f †
↑ f †

↓�L
M ≈ 1

2
�L

M+1 + 1

2

1

L
∑
b�=b′

c†
b↑c†

b′↓�L
M . (52)

We find, for example,

〈�0| f †
↑d↑|�1〉 = 〈0|(�L

M+1

)∗
(−d↑ f †

↑ )| ↑〉 ⊗ f †
↓�L

M

= 〈0|d↑|↑〉(�L
M+1

)∗
f †
↑ f †

↓�L
M

≈ 1/2, (53)

and similarly

〈�0| f †
↓d↓|�1〉 ≈ 1/2, (54)

giving a total electron hopping matrix element of 1. Other
matrix elements can be computed in an analogous way. The
effective Hamiltonian in the basis {�1, �0, �

′
0, �2,−� ′

2} in
the large-L limit is then

HS
eff =

⎛
⎜⎜⎜⎜⎝

ES
1 v v v v

v ES
0 0 0 0

v 0 ES
0

′ 0 0
v 0 0 ES

2 0
v 0 0 0 ES

2
′

⎞
⎟⎟⎟⎟⎠. (55)

The signs of basis states have been chosen so that the out-
of-diagonal matrix elements are all positive (in the sense of
having the same sign as v). The schematic representation of
this Hamiltonian is shown in Fig. 7. If the 1/L corrections
in diagonal elements are neglected (as is valid in the large L
limit), so that

ES
02 = −α

L
2

+ U/2,

ES
02

′ = −α
L
2

+ 2α + U/2 = ES
02 + 2α,

ES
1 = −α

L
2

+ α,

(56)

then the problem simplifies further to a 3 × 3 matrix problem:

HS
eff =

⎛
⎜⎝

ES
1

√
2v

√
2v√

2v ES
02 0√

2v 0 ES
02

′

⎞
⎟⎠. (57)

The numeric diagonalization of this Hamiltonian produces
a result which agrees very well with the DMRG results even
for L = 50; see Fig. 6 (bottom panel). Exact matrix elements
for any values of L and M are provided in Appendix D.

D. Dependence on hybridization strength

We now consider the �-dependence of the singlet-doublet
excitation energy for different values of U .

1. Large-U regime

At the particle-hole symmetric point, the lowest eigenvalue
of the Hamiltonian HD

eff in Eq. (45) is

ED = −α
L − 1

2
+ U −

√
16v2 + (U + 2α)2

4
. (58)

The expansion around the U → ∞ limit is

ED ≈ −α
L
2

− 2
v2

U
+ 4v2α

U 2
+ O(1/U 3)

= −α
L
2

− J

4
+ Jα

2U
+ O(1/U 3), (59)

where J = 8v2/U as defined in Eq. (30). The first term is the
energy of the half-filled decoupled bath, Eq. (18). The second
term is the trivial linear shift of energies in the Schrieffer-
Wolff transformation [75], −J/4. The third term is the leading
order J/U correction. As expected, it is proportional to α and
J , and inversely proportional to U (the energy cost of valence
fluctuations), since it is due to the perturbation of the SC state
by the hybridization with the impurity.

The lowest eigenvalue of the Hamiltonian HS
eff in Eq. (57)

in the large-U limit is

ES ≈ −α
L − 2

2
− 8v2

U
+ O(1/U 3)

= −α
L − 2

2
− J + O(1/U 3). (60)

Now we consider the difference, i.e., the Yu-Shiba-Rusinov
excitation energy EYSR = ES − ED. At large U we then re-
cover the Kondo-limit results from Sec. IV B,

EYSR = α − 3J

4
, (61)

up to 1/L corrections.
For moderate U one finds deviations from the simple

linear-in-� behavior, see Fig. 8. The YSR energy at the same
�/U ratio is found to be higher, the lower U is. The charge
fluctuations thus reduce the effects of the exchange coupling
(at the same value of J). Note that at large � the eigen-
value reaches the limiting value of Eedge = Eqp,+ − 2α =
(1 + 1/L)α − 2α = −(1 − 1/L)α (the “gap edge”) with a
finite slope, indicating a level crossing. This is the main dif-
ferenece compared with the problem with a finite bandwidth,
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FIG. 8. Excitation energy EYSR = ES − ED in the flat-band limit
for the �N = 1 transitions. Parameters are L = 50, α = 0.1. Full
lines: DMRG results. Dashed lines: analytical calculation. The small
deviations are due to the 1/L correction that for simplicity have not
been included here. As discussed in the text, the analytical solution
passes the “gap edge” value of Eedge = −(1 − 1/L)α (lowest dotted
black line) with a finite slope. The DMRG solver always converges
to the lowest-energy excitation, thus beyond this crossing point the
DMRG results remain pinned at Eedge.

where the subgap state experiences a level repulsion and at
large � asymptotically approaches the gap edge which is
accompanied by a continuous transfer of the spectral weight
from the subgap states to the continuum of Bogoliubov ex-
citations [83]. In the flat-band case there is no continuum,
only a set of degenerate excitations which do not hybridize
with the subgap state, thus the hybridized state can cross this
set unperturbed. The nonlinearity in � can be obtained by
expanding the lowest eigenvalue of HS

eff to the next order in
1/U :

ES ≈ −α
L − 2

2
− 8v2

U
+ 128v4 − 32v2α2

U 3

= −α
L − 2

2
− 8�

πρU 2
− 32 �

U

[
(πρα)2 − 4πρ �

U

]
(πρU )3

. (62)

2. Small-U limit

We now consider the expansion for small values of U . For
Eq. (58) we find

ED ≈ −α
L − 1

2
+ U

4

(
1 − α√

α2 + 4v2

)
−

√
α2 + 4v2

2
.

(63)
Taking the small-� limit gives ED ≈ −αL/2, thereby fully
canceling out the U dependence.

The lowest eigenvalue of the Hamiltonian HS
eff in Eq. (57)

in the small-U limit is

ES ≈ −α
L − 2

2
+ U

2

α2 + 2v2

α2 + 4v2
−

√
α2 + 4v2. (64)

Taking the � → 0 limit, we find ES ≈ −αL/2 + U/2. At zero
�, the excitation energy is

�E (� = 0) = lim
�→0

(ES − ED) = U/2, (65)

as expected and as seen in Fig. 8. The lowest excitation is not a
YSR singlet, but a ABS-like state with a QD in a proximitized
state (|0〉 + |2〉 superposition). We note in passing that the
order of taking the limits is important; here we took the limit
of U → 0 followed by � → 0.

The � dependence to lowest order is

�E = ES − ED ≈ U

2
− �

πρα

(
1 + 3U

2α

)
. (66)

The energy reduction in the Andreev-bound-state regime is
controlled by the �/α ratio, a nonzero repulsion U is merely
an order U/α correction to the prefactor.

3. Special case of U = 2α

In the limit of U = 2α, some states in the singlet subspace
become degenerate: ES

02 = ES
1 . In this regime, we find the

following expansions in the weak hybridization limit:

ED = −α
L
2

− v2

2α
,

ES = −α
L
2

− v2

2α
+ α −

√
2v. (67)

This leads to the interesting result that

ES − ED = α −
√

2�

πρ
. (68)

This square root singularity is indeed observed in the results
shown in Fig. 8.

The singular behavior observed at U = 2α marks the
boundary between the regimes of proximitized (Andreev) sub-
gap states for U < 2α and the Yu-Shiba-Rusinov states for
U > 2α. This is a nontrivial observation because it is gen-
erally believed that the cross-over between these two limits
is perfectly smooth. In fact, there exists a clear anomaly at
U = 2α in the low-� limit.

E. Dependence on gate voltage

The formalism also correctly describes the transitions to
different impurity occupancies when ε = U (1/2 − ν) with
ν �= 1. We find good agreement with the reference DMRG
results, see Fig. 9. This is the case even taking the truncated
three-dimensional basis from Eq. (45). For ν sufficiently far
away from 1, the doublet solution enters the quasicontinuum:
the black line in Fig. 9 shoots past the gap edge α(1 + 1/L).
The true lowest excited state is then a decoupled Bogoliubov
quasiparticle sitting at the bottom of the quasicontinuum.

In the large-U limit, the lowest lying eigenstates are

ES ≈ −α
L − 2

2
+ 8v2

u(3 + 4ν(ν − 2)
,

ED ≈ −α
L
2

+ 2v2

u(3 + 4ν(ν − 2)
,

(69)

so that

�E = ES − ED = (L + 1)

L α + 6v2

3 + 4ν(ν − 2)

≈ α − 3J

4
, (70)
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FIG. 9. YSR subgap state dispersion (positive frequency branch)
in the flat-band limit. The lineshape corresponds to the conven-
tional YSR loops. Parameters are U = 100, L = 50, �/U = 0.01,
ε = U (1/2 − ν ), where ν controls the impurity filling.

where we noted that away from half filling, the Kondo ex-
change coupling is

J = 2v2

−ε
+ 2v2

U + ε
= 1

4ν(2 − ν) − 3

8v2

U
. (71)

As expected, to first order in 1/U , the only effect of departure
from the particle-hole asymmetry is the modified value of the
Kondo exchange. The leading correction is of order αJ/U , as
found in the previous section.

V. COMPARISON TO THE BCS ZERO-BANDWIDTH
APPROXIMATION

A commonly used approximation in QD-SC models is the
ZBW limit of BCS, where the SC is modeled by a single level
with mean-field pairing interaction [84–87]. Here we show
that this description is equivalent to the RM in the γ → 0
limit. Consider the ZBW Hamiltonian

H = ε(n̂ − 1) + Un̂↑n̂↓ + v
∑
i,σ

( f †
σ dσ + d†

σ fσ )

−�( f †
↑ f †

↓ + H.c.). (72)

In the doublet subspace with the basis states
{d†

↑, d†
↑ f †

↑ f †
↓ , f †

↑ , d†
↑d†

↓ f †
↑} (applied to the zero occupancy

vacuum state) one finds the following matrix representation:

HD
ZBW =

⎛
⎜⎝

0 −� v 0
−� 0 0 −v

v 0 −ε 0
0 −v 0 U + ε

⎞
⎟⎠. (73)

Alternatively, one may work in the basis

(d†
↑ + d†

↑ f †
↑ f †

↓ )/
√

2 = d†
↑(1 + f †

↑ f †
↓ )/

√
2,

(d†
↑ − d†

↑ f †
↑ f †

↓ )/
√

2 = d†
↑(1 − f †

↑ f †
↓ )/

√
2,

f †
↑ , d†

↑d†
↓ f †

↑ ,

where the matrix representation is

HD
ZBW =

⎛
⎜⎜⎜⎝

−� 0 v/
√

2 −v/
√

2

0 +� v/
√

2 v/
√

2

v/
√

2 v/
√

2 −ε 0

−v/
√

2 v/
√

2 0 U + ε

⎞
⎟⎟⎟⎠, (74)

which is equivalent to HD
eff in Eq. (42) up to a trivial shift

of all diagonal elements. The combination (1 + f †
↑ f †

↓ )/
√

2
represents a Cooper-pair state, while the combination (1 −
f †
↑ f †

↓ )/
√

2 represents a two-quasiparticles state with the en-
ergy cost of 2�.

In the singlet subspace, we work in the basis (the signs
are chosen to produce positive signs for the out-of-diagonal
matrix elements)

(d†
↑ f †

↓ − d†
↓ f †

↑ )/
√

2, (1 + f †
↑ f †

↓ )/
√

2,

− (1 − f †
↑ f †

↓ )/
√

2, d†
↑d†

↓(1 + f †
↑ f †

↓ )/
√

2,

d†
↑d†

↓(1 − f †
↑ f †

↓ )/
√

2,

where the matrix takes the following form:

HS
ZBW

=

⎛
⎜⎜⎜⎝

0 v v v v

v −�− ε 0 0 0
v 0 �− ε 0 0
v 0 0 −�+U + ε 0
v 0 0 �+U + ε

⎞
⎟⎟⎟⎠.

(75)

Up to a trivial energy shift, this is exactly the same as HS
eff

from Eq. (55).
The equivalence between the models is exact in the ZBW

limit γ → 0, when α plays the role of excitation energy gap,
akin to � in BCS. The demonstration of this equivalence is
one of the key results of this work.

VI. CONCLUSION

Even though superconductivity and Bose-Einstein conden-
sation are apparently quite different states of matter, they
emerge as a result of the same attractive pairing interaction
in the opposite limits of pairing strength. When a system
with pairing interaction is coupled to a magnetic impurity,
it induces discrete singlet states inside the SC gap. We find
that the subgap states persist throughout the weak to strong
pairing crossover, and we furthermore show that their nature
remains qualitatively the same. The differences are limited to
the scaling of hybridization strength and excitation gap, both
due to the decreasing importance of bath kinetic energy with
increased pairing.

In the limit of strong pairing interaction the kinetic energy
term can be omitted. The single-particle levels in the bath are
then degenerate, which lets us obtain a flat-band Hamiltonian
in the reduced Hilbert space spanned by just a few many-
particle states connected by the Hamiltonian. The BEC limit
of the problem is in this sense analytically solvable, and we
show that the results agree very well with exact calculations.
We also show that the flat-band Hamiltonian in the limit of

024513-12



YU-SHIBA-RUSINOV STATES, BCS-BEC CROSSOVER, … PHYSICAL REVIEW B 106, 024513 (2022)

large system is formally exactly equivalent to the BCS zero
bandwidth approximation.

ZBW approximations and similar toy models are very com-
monly applied when modeling QDs coupled to SCs [87–91].
Our result explains their surprisingly strong predictive power
and thus provides a solid foundation for their application
in this context. Typically the argument for using the ZBW
approximation is that a single level at the gap edge is suf-
ficient to encompass the important phenomena, because the
SC has a diverging density of states at the gap edge and
because these near-edge are the most important for the subgap
state formation: in fact, the subgap state weight originates
precisely from the depletion of the spectral weight from the
superconducting coherence peaks. The higher excited states
largely remain unperturbed by the impurity, and their small
contributions can be discarded. We find that this is a very
reasonable approximation in a variety of situations.

Due to its simplicity, the flat-band model can be straight-
forwardly extended in various ways. To accurately describe
mesoscopic SC islands, it is important to take into account
the Coulomb repulsion between the island electrons [52]. This
can be done by augmenting the model with a charging energy
term ECn̂2

SC. Because the RM conserves particle number we
are operating in the canonical ensemble, thus implementing
such operator is very simple and it is straightforward to extend
the effective flat-band model by adding EC to appropriate di-
agonal matrix elements. For a problem with a single SC bath,
this merely reduces the energy scale for charge fluctuations
from U/2 to U/2 + Ec [50–52]. The Zeeman splitting can also
be trivially included in the flat-band model. Additional triplet
(and quadruplet) states that become relevant at large magnetic
fields can also be included in consideration.

The analytical approach can also be extended to multi-
channel impurity problems. These have additional degrees of
freedom, namely the occupation number differences between
channels (i.e., the distribution of Cooper pairs between the two
superconductors). An appropriate linear combination of such
states corresponds to well defined phase differences which
would appear in the equivalent BCS formalism, while a charg-
ing term would induce phase fluctuations. We will pursue this
direction in our future work.
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APPENDIX A: EIGENENERGY CALCULATION

Summing Eq. (6) over i, j in the set U we obtain

[B, B†] = 1 − 1

U N̂, (A1)

where N̂ = ∑U
i n̂i is the total number of electrons in the

unblocked levels.

In this Appendix we evaluate B†B on state |M〉 =
(B†)M |0〉. By repeatedly commuting B† and B we find

B†B|M〉 = (B†B)(B†)M |0〉
=

[
B†

(
B†B + 1 − 1

U N̂

)
(B†)M−1

]
|0〉

=
[

(B†)2B(B†)M−1 +
(

1 − 2(M − 1)

U

)
(B†)M

]
|0〉

=
[

(B†)3B(B†)M−2 +
(

1 − 2(M − 2)

U

)
(B†)M

+
(

1 − 2(M − 1)

U

)
(B†)M

]
|0〉

=
[

M∑
m=1

(
1 − 2(m − 1)

U

)]
|M〉 = cM |M〉, (A2)

with

cM = (1 + U − M )M

U . (A3)

APPENDIX B: ACTION OF CREATION OPERATORS
ON �L

M

In this Appendix we discuss the action of fermionic op-
erators on the eigenstates �L,U

M of the Richardson’s model.
This defines the relations between the states from subspaces
distinguished by the different number M of Cooper pairs.
The subsectors differing by �M = ±1 are coupled due to
the Cooper-pair-breaking property of the exchange interac-
tion induced by the presence of the magnetic impurity. The
relations derived in the following provide the full set of alge-
braic relations required to determine the coupling between the
accessible states and all matrix elements in the flat-band limit.

1. Single-quasiparticle state

In this section the number of levels is fixed to L. When
a single superscript is indicated for brevity, the number in-
dicates the number of unblocked levels, i.e., �U

M ≡ �L,U
M .

When no superscript is indicated, all levels are unblocked, i.e.,
�M ≡ �L,L

M .
Let us consider the spin-doublet state

ψσ = f †
σ �L,L

M = 1√
L

L∑
b=1

c†
b,σ �L,L

M , (B1)

with �L,L
M being the normalized eigenstate for M Cooper

pairs in a system with L levels, all of them unblocked. The
application of the creation operator creates a superposition of
states with one blocked level indexed by b. This state is thus
spanned by the following orthonormal set of L eigenstates of
the SC bath:

φbσ = c†
b,σ �

L,L\b
M , (B2)

where L\b in the superscript of � indicates that the level b
is blocked. If all levels are equal, then so are the coefficients,
thus

ψσ = C
1√
L

L∑
b=1

φbσ . (B3)
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R. ŽITKO AND L. PAVEŠIĆ PHYSICAL REVIEW B 106, 024513 (2022)

Let us now fix the proportionality constant C:

〈ψσ |ψσ 〉 = 〈
�L

M

∣∣ fσ f †
σ

∣∣�L
M

〉 = 1 − 〈
�L

M

∣∣ f †
σ fσ

∣∣�L
M

〉 = C2.

(B4)
We expand in the site basis:

f †
σ fσ = 1

L
∑
i, j

c†
i,σ c j,σ = 1

L
∑

i

n̂i,σ + 1

L
∑
i �= j

c†
i,σ c j,σ

= N̂σ

L + 1

L
∑
i �= j

c†
i,σ c j,σ . (B5)

The first term gives M/L. The second gives zero, because
when applied to the ket it produces a linear combination of
terms which all contain singly occupied levels, and such a
state is orthogonal to �L

M in the bra. Finally,

C2 = 1 − M

L = L − M

L . (B6)

We conclude that

ψσ = f †
σ �L,L

M =
√
L − M

L
1√
L

∑
b

c†
b,σ �

L,L\b
M . (B7)

This expression is exact. For M → 0, in the absence of any
Cooper pairs, the prefactor becomes equal to 1, since the
electron can be added to any level. For M → L, the prefactor
tends to 0, since there are only a few levels available to
accommodate the additional electron. Finally, for half filling
the prefactor becomes 1/

√
2, thus

ψσ = f †
σ �L,L

L/2 = 1√
2

1√
L

∑
b

c†
b,σ �

L\b
L/2 . (B8)

Note that this state ψσ is not normalized to 1.
In the same way one derives

ψ ′
σ = fσ̄�L,L

M = (−1)σ
√

M

L
1√
L

∑
b

c†
b,σ �

L,L\b
M−1 , (B9)

where (−1)↑ = −1 and (−1)↓ = 1. This expression is exact.
It simplifies at half filling to

ψ ′
σ = (−1)σ fσ̄�L,L

L/2 = 1√
2

1√
L

∑
b

c†
b,σ �

L,L\b
L/2−1, (B10)

The sign factor is due to the order convention of spin-up and
spin-down operators in the hard-core boson operators Ai.

2. Two-quasiparticle state

The other state of interest is the spin-singlet state

ψ2 = f †
↑ f †

↓�L
M

= 1

L
∑
i, j

c†
i↑c†

j↓�L
M

= 1

L
∑

i

A†
i �

L
M + 1

L
∑
b�=b′

c†
b↑c†

b′↓�L
M

= 1√
L

B†�L
M + 1

L
∑
b�=b′

c†
b↑c†

b′↓�L
M . (B11)

We have

B†�L
M = B†NM |M〉 = NM |M + 1〉 = NM

NM+1
�L

M+1. (B12)

The normalization factors NM are evaluated in Appendix C.
The states with two blocked levels are spanned by the or-
thonormal set of L2 − L = L(L − 1) states (for b �= b′),

φbb′ = c†
b,↑c†

b′,↓�
L,L\b,b′
M . (B13)

We thus have

1

L
∑
b�=b′

c†
b↑c†

b′↓�L
M = C

1√
L(L − 1)

∑
b�=b′

φbb′ , (B14)

with a proportionality constant C that needs to be determined.
For that purpose, we compute the norm:

C2 = 1

L2

∑
b�=b′,c �=c′

〈
�L

M

∣∣cc′↓cc↑c†
b↑c†

b′↓
∣∣�L

M

〉
. (B15)

Only the terms with c = b and c′ = b′ contribute, otherwise
the states are orthogonal. Now

cb′↓cb↑c†
b↑c†

b′↓ = 1 − n̂b↑ − n̂b′↓ + n̂b↑n̂b′↓. (B16)

We need to handle the restriction to b �= b′ carefully, noting
that

∑
b�=b′ 1 = L(L − 1),

∑
b�=b′ n̂bσ = Nσ (L − 1), and∑

b�=b′
n̂b↑n̂b′↓ =

∑
b,b′

n̂b↑n̂b′↓ −
∑

b

n̂b↑n̂b↓ = N̂↑N̂↓ −
∑

b

P̂2,b.

(B17)
The operator P̂2 = ∑

b P̂2,b counts the number of pairs in
the system, therefore 〈�M |P̂2|�M〉 = M. Collecting all terms
we then find

C2 = 1

L2

〈
�L

M

∣∣[L(L − 1) − (L − 1)N̂↑

− (L − 1)N̂↓ + N̂↑N̂↓ − P̂2]
∣∣�L

M

〉
= (L − M )(L − M − 1)

L2
. (B18)

For M = 0, the factor C2 = 1 − 1
L , which goes to 1 in the

large-L limit. In the opposite limit of M = L, it is zero.
Finally, for half filling, it tends to C2 = 1/2 in the large-L
limit.

We write ψ2 in the form

ψ2 = f †
↑ f †

↓�L
M =

√
(1 + M )(L − M )

L �L
M+1

+
√

(L− M )(L− M − 1)

L
1√

L(L− 1)

∑
b�=b′

φbb′ . (B19)

This expression is exact. There is an overall
√
L − M factor.

The relative importance of the first and the second term scale
as

√
M and

√
L − M, respectively, up to 1/L corrections.

For M = L/2, we finally find

ψ2 = f †
↑ f †

↓�L
M = 1

2

√
2 + L
L �L

M+1

+ 1

2

√
L − 2

L − 1

1

L
∑
b�=b′

c†
b↑c†

b′↓�
L\b,b′
M . (B20)
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Note that for large L both square roots tend toward 1. The
states with two blocked levels are orthogonal to �L

M+1 states.
Hence,

〈ψ2|ψ2〉 = (1 + M )(L − M )

L2

+ (L − M )(L − M − 1)

L2
= L − M

L . (B21)

For M = L/2, this gives

〈ψ2|ψ2〉 = 1
2 . (B22)

The state ψ2 = f †
↑ f †

↓�L
M is thus not normalized to 1.

In an analogous way one calculates

ψ ′
2 = f↓ f↑�L

M =
√

M(1 + L − M )

L �L
M−1

−
√

M(M − 1)

L
1√

L(L − 1)

∑
b�=b′

φ′
bb′ , (B23)

with φ′
bb′ = c†

b,↑c†
b′,↓�

L\b,b′
M−2 . This expression is exact. At half

filling, it simplifies to

ψ ′
2 = f↓ f↑�L

L/2 = 1

2

√
2 + L
L �L

L/2−1

− 1

2

√
L − 2

L − 1

1

L
∑
b�=b′

φ′
bb′ , (B24)

with the same prefactors as for ψ2.

APPENDIX C: EVALUATION OF NORMALIZATION NM

We fix NM from the condition

〈�M |�M〉 = N 2
M〈M|M〉 = 1. (C1)

We write

dM = 〈M|M〉 = 〈0|BM (B†)M |0〉, (C2)

so that NM = (dM )−1/2. Clearly d1 = 1 and N1 = 1.
Recall Eq. (A2), B†B|M〉 = cM |M〉. This can also be ex-

pressed as B|M〉 = cM |M − 1〉. Thus, we find

dM = 〈M|M〉 = 〈M − 1|B|M〉
= cM〈M − 1|M − 1〉 = cMdM−1. (C3)

The solution of this recursion equation is

dM = (−U )−M (1)M (−U )M, (C4)

where (a)n = �(a + n)/�(a) is the Pochhammer symbol. At
half filling U = L and M = L/2, we find

dL/2 = L!√
LL

. (C5)

Furthermore, for U = L one has

N 2
M

N 2
M+1

= dM+1

dM
= (1 + M )(L − M )

L . (C6)

APPENDIX D: REFERENCE CALCULATION

The method presented in Sec. IV is exact, but for clarity
we have presented in that section only simplified results ob-
tained in the L → ∞ limit at half-filling. Below are the exact
expressions for HD

eff and HS
eff :

HD
eff =

⎛
⎜⎜⎜⎜⎜⎜⎝

ED
1 0 v

√
L−M
L −v

√
M
L

0 ED′
1 v

√
M
L v

√
L−M
L

v

√
L−M
L v

√
M
L ED

0 0

−v

√
M
L v

√
L−M
L 0 ED

2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D1)

HS
eff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ES
1 v

√
2(M+1)

L v

√
2(L−M−1)

L v

√
2(L−M )

L v

√
2M
L

v

√
2(M+1)

L ES
0 0 0 0

v

√
2(L−M−1)

L 0 ES
0

′ 0 0

v

√
2(L−M )

L 0 0 ES
2 0

v

√
2M
L 0 0 0 ES

2
′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D2)

We provide a Mathematica notebook with these definitions, as well as a corresponding input file for the DMRG solver, as
Supplemental Material [53].
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R. ŽITKO AND L. PAVEŠIĆ PHYSICAL REVIEW B 106, 024513 (2022)

[85] E. Vecino, A. Martín-Rodero, and A. LevyYeyati, Josephson
current through a correlated quantum level: Andreev states and
Pi-junction behavior, Phys. Rev. B 68, 035105 (2003).

[86] F. S. Bergeret, A. LevyYeyati, and A. Martín-Rodero, Joseph-
son effect through a quantum dot array, Phys. Rev. B 76, 174510
(2007).

[87] K. Grove-Rasmussen, G. Steffensen, A. Jellinggaard, M. H.
Madsen, R. Žitko, J. Paaske, and J. Nygård, Yu-Shiba-Rusinov
screening of spins in double quantum dots, Nat. Commun. 9,
2376 (2018).

[88] K. Yosida, Bound state due to the s-d exchange interaction,
Phys. Rev. 147, 223 (1966).

[89] R. Žitko and M. Fabrizio, Non-Fermi-liquid behavior in quan-
tum impurity models with superconducting channels, Phys.
Rev. B 95, 085121 (2017).

[90] F. von Oppen and K. J. Franke, Yu-Shiba-Rusinov states in real
metals, Phys. Rev. B 103, 205424 (2021).

[91] H. Schmid, J. F. Steiner, K. J. Franke, and F. von Oppen,
Quantum Yu-Shiba-Rusinov dimers, Phys. Rev. B 105, 235406
(2022).

024513-18

https://doi.org/10.1103/PhysRevB.68.035105
https://doi.org/10.1103/PhysRevB.76.174510
https://doi.org/10.1038/s41467-018-04683-x
https://doi.org/10.1103/PhysRev.147.223
https://doi.org/10.1103/PhysRevB.95.085121
https://doi.org/10.1103/PhysRevB.103.205424
https://doi.org/10.1103/PhysRevB.105.235406

