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Exchange interaction between two quantum dots coupled through a superconducting island
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We present a theoretical study of a system consisting of a superconducting island and two quantum dots,
a possible platform for building qubits and Cooper pair splitters, in the regime where each dot hosts a single
electron and, hence, carries a magnetic moment. We focus on the case where the dots are coupled to overlapping
superconductor states and we study whether the spins are ferromagnetically or antiferromagnetically aligned.
We show that if the total number of particles is even the spins align antiferromagnetically in the flatband
limit, i.e., when the bandwidth of the superconductor is negligibly small, but they align ferromagnetically if the
bandwidth is finite and above some value. If the total number of particles is odd, the alignment is ferromagnetic
independently from the bandwidth. This implies that the results of the flatband limit are applicable only within a
restricted parameter regime for realistic superconducting qubit systems and that some care is required in applying
simplified models to devices such as Cooper pair splitters.
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I. INTRODUCTION

Superconducting devices are attracting strong interest due
to their applications in quantum computing [1–11]. Build-
ing upon the ideas of semiconductor spin qubits [12,13], the
combination of spin carrying quantum dots and supercon-
ducting islands is also a possible qubit realization [14–18]
which remains to be explored more in depth. Such devices are
particularly promising due to the presence of tunable long-
lived subgap states. They could find use in a wide range of
applications, such as Cooper-pair splitters [19], for linking
spatially separated superconducting qubits [20–22], or build-
ing Andreev molecules [23].

Quantum dots (QDs) can be designed to possess a single
relevant electron state well separated from other levels [24].
In this case, the QD may be modeled as a single Anderson
impurity with two characteristic energy scales: the energy of
the QD level, ε, and the on-site interaction energy, U . If U
is large and ε is deep below the Fermi level, the QD hosts a
single electron and carries a spin just like magnetic impurities.

Two magnetic impurities in the same host material can
be coupled in different ways. In a metallic host, they couple
via the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
which, depending on the interimpurity distance, may result in
a ferromagnetic (FM) or antiferromagnetic (AFM) spin align-
ment. For very short distances, when the distance is on the
order of the lattice constant, the atomistic details play a crucial
role and the coupling is rather described as superexchange
with the coupling sign determined by the electron filling of
the intermediary atoms. Superexchange is also the essential
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mechanism governing the interaction between nonneighbor-
ing QDs of a chain [25].

In the case of a superconducting mediator, the RKKY
interaction is shifted toward AFM alignment [26] due to ad-
ditional processes involving the subgap states. The effect of
superconductivity on superexchange, however, has not been
studied much so far.

In this paper, we study the system with two QDs coupled
to a superconducting island (SI) as sketched in Fig. 1. Our
goal is to elucidate the sign and the strength of the interdot
exchange coupling in the case where the two dots are coupled
to the same superconductor (SC) state: this corresponds to the
limit of small separation between the dots.

II. MODEL OF THE SUPERCONDUCTOR

Conventional superconductors are successfully described
by the BCS mean-field theory [27]. An alternative approach to
superconductivity consists of solving the pairing model with-
out performing the mean-field decoupling in the canonical
ensemble. The simplified version of the pairing Hamiltonian
is also known as the Richardson or the picket-fence model
[28–30]. In the original work of Richardson and Sherman
[31], several energy levels εi are taken into account which,
in the context of solid state physics, can be thought of as
the states in the vicinity of the Fermi energy that participate
in the attractive pairing interaction. The pairing interaction
consists of quartic terms [see Eq. (1)] leading to the formation
of Cooper pairs.

The Richardson model is exactly solvable for an isolated
SC. However, if the SC is coupled to QDs, exact analytical
solutions are available only in the flatband limit. In this limit,
the energy levels are all degenerate: εi ≡ const. Despite this
simplification, the flatband limit was proven to provide a
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FIG. 1. Schematic of a superconducting island bridging two
quantum dots. Each dot carries a spin.

proper description for systems of one QD coupled to the SI
[16]. In this paper, we extend these studies to the case of two
QDs coupled to the island.

Let us consider a system with N fermionic single-particle
levels and write the pairing Hamiltonian of the Richardson
model as

HSI = − g

N

N∑
i, j

c+
i↑c+

i↓c j↓c j↑, (1)

where ciσ is the fermionic annihilation operator corresponding
to the energy level i and spin σ . In contrast to the BCS
Hamiltonian, the number of fermions is conserved. For N
superconducting levels and M Cooper pairs, the ground state
(GS) is given by |�N

M〉 = ∑
conf |conf〉/

√
N N

M , which is the
completely symmetric combination of all possible configura-
tions of M Cooper pairs occupying the N levels. The number
of configurations is N N

M = (N
M

)
. The GS energy is expressed

as [16,30]

E0 = − g

N
M(N + 1 − M ). (2)

A great advantage of the flatband limit is that the model
is invariant under any unitary transformations as long as the
opposite spin levels are transformed with complex conjugate
matrices. To be more precise, for any unitary matrix Ui j , the
Hamiltonian is invariant under

f j↑ =
∑

i

Ujici↑, f j↓ =
∑

i

U ∗
jici↓. (3)

The physical significance of the complex conjugation is that it
maintains the time-reversal invariance of the Hamiltonian.

At this point, we have complete freedom how to choose the
unitary transformation. We will use this freedom to transform
into a basis in which the hybridization between the dots and
the superconductor has a convenient form. In general, the
hybridization operators are defined as

Hhyb = Hhyb,L + Hhyb,R, (4)

where

Hhyb,L = vL

∑
i

(γLid
+
L↑ci↑ + γ ∗

Lid
+
L↓ci↓ + H.c.) (5)

describes the coupling between the left dot and the su-
perconductor. dLσ is the fermionic annihilation operator
corresponding to the left dot level. The strength of the cou-
pling is determined by vL while the coefficients γLi describe
the distribution of the couplings obeying

∑
i |γLi|2 = 1 (i.e.,

they define the wave function of the superconductor state that
hybridizes with the QD level). Note that for different spin
orientations we use complex conjugate coupling constants as
a consequence of the time-reversal symmetry. The coupling
between the right dot and the superconductor is given by the
same formula as (5), but with vR and γRi. The coefficients are
also normalized as

∑
i |γRi|2 = 1.

The overlap between the distribution of γLi and γRi is given
by [18]

α =
∑

i

γ ∗
LiγRi (6)

whose absolute value ranges from 0 to 1. Within the frame-
work of the Richardson model, α mimics the distance between
the dots. Namely, α = 0 means that there is no overlap be-
tween the distributions and the dots are far from each other.
On the other hand, |α| = 1 implies that the dots are coupled to
the same superconducting state and are, hence, close to each
other. In the present paper, we focus on the latter limit, i.e.,
when the distributions γLi and γRi are basically the same apart
from an overall phase factor. This limit is valid as long as
the Yu-Shiba-Rusinov states of the dots have a large overlap.
Recent experiments show that the spatial extension of these
states can reach even the range of 50 nm [32]. We also note
that α fully characterizes the relation between the coefficients
γLi and γRi in the flatband limit, while for finite bandwidth
their detailed values (energy dependence) also matter.

As shown in Appendix A, there exists a unitary transfor-
mation such that f0↑ = ∑

i γL/Rici↑ is one of the new basis
states which forms an orthonormal system together with the
other new basis states. The state corresponding to f0σ will be
referred to as the distinguished state of the superconductor.
The unitary transformation leaves the pairing Hamiltonian
invariant in form so that

HSI = − g

N

∑
i j

f +
i↑ f +

i↓ f j↓ f j↑ (7)

due to the flatband limit. In the presence of a nonzero band-
width, the superconductor levels would have nonuniform εi

which, under the unitary transformation, would generate in-
terlevel hopping terms.

With the distinguished level f0σ , let us define the many-
body superconductor states

|�0〉 = ∣∣0, �N−1
M

〉
and |�2〉 = ∣∣↑ ↓, �N−1

M−1

〉
, (8)

where �0 (�2) describes the state where the f0 level is empty
(occupied by a Cooper pair) and the remaining N − 1 super-
conductor levels are filled with M (with M − 1) Cooper pairs
in a completely symmetric fashion. The pairing Hamiltonian
is represented on the basis of these states as

H = E0I + HSC, HSC =
[

gν β

β g(1 − ν)

]
, (9)

where

ν = M/N (10)

is the filling factor and

β = −g
√

ν(1 − ν). (11)
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The eigenvalues of the matrix are zero and g corresponding
to the GS and the excited state, respectively. This indicates
that the gap of the model is related to the pairing energy
as 2
 = g. Of course, there are many other states with the
excitation energy of g, but this is the only one mixing with the
GS in the presence of hybridization. The minimal model of
the superconductor, Eq. (9), is sufficient to study the coupling
of two dots with the overlap parameter α = 1 in the flatband
limit. Note that if α �= 1 there would exist two distinguished
levels (see Appendix A) and instead of Eq. (8) we would need
to define a more complex set of many-body basis states.

III. TWO QUANTUM DOTS COUPLED TO
THE SUPERCONDUCTOR

We study the effect of hybridization on the electronic struc-
ture in the case of α = 1, when the two dots are coupled to the
same superconductor level. Furthermore, it is assumed that the
system has parity symmetry, i.e., vL = vR = v, UL = UR = U ,
and εL = εR = ε.

The total Hamiltonian of the system is expressed as

H = HSI + HQD + Hhyb, (12)

where HSI is given by Eq. (7),

HQD = ε
∑

σ

(n̂Lσ + n̂Rσ ) + U (n̂L↑n̂L↓ + n̂R↑n̂R↓), (13)

and the coupling between the dots and the superconductor is
determined by

Hhyb =
∑

σ

[v(d+
Lσ + d+

Rσ ) f0σ + H.c.], (14)

where dLσ (dRσ ) is the annihilation operator of the left (right)
quantum dot.

The total Hamiltonian conserves both the number of par-
ticles and the total spin. In the following, we determine the
lowest-energy states in different charge and spin sectors by
using analytical and numerical methods.

In the analytical calculation, we apply the approximation
that the on-site interaction U is infinitely large and, hence,
none of the dots can be doubly occupied. Furthermore, we
take the thermodynamic limit of a macroscopically large num-
ber of states in the SI.

Numerical calculations are performed with density matrix
renormalization group (DMRG) technique [33,34] in which
U has a finite value and the system is finite, N = 80. For this
purpose, we extended the approach described in Refs. [35,36]
and implemented a matrix product operator expression of the
Hamiltonian for the QD-SI-QD system; see Appendix B for
details.

We start the presentation of the analytical model by intro-
ducing four different sectors which are not coupled to each
other because of the conservation of particle number and spin.
For an even number of particles, the total spin is either 0
(singlet) or 1 (triplet) since the superconductor is an overall
singlet, but the electrons hosted by the dots can have arbitrary
spin orientations. For an odd number of particles, the total spin
of the system is always 1/2 (doublet), but based on the parity
symmetry of states a symmetric and an antisymmetric sector
can be identified.

A. Analytical results for an even number of particles

In the sector of an even number of particles and S = 0, the
relevant states are given by

∣∣φS
0

〉 = 1√
2

(|↑,↓〉 − |↓,↑〉) ⊗ ∣∣0, �N−1
M

〉
,

∣∣φS
2

〉 = 1√
2

(|↑,↓〉 − |↓,↑〉) ⊗ ∣∣↑ ↓, �N−1
M−1

〉
,

∣∣φS
0X

〉 = 1

2

(
(|↑, 0〉 + |0,↑〉) ⊗ ∣∣↓, �N−1

M

〉
− (|0,↓〉 + |↓, 0〉) ⊗ ∣∣↑, �N−1

M

〉)
,∣∣φS

0D

〉 = |0, 0〉 ⊗ ∣∣↑ ↓, �N−1
M

〉
,∣∣φS

−2D

〉 = |0, 0〉 ⊗ ∣∣0, �N−1
M+1

〉
. (15)

The first part always encodes the state of the dots while the
second part after ⊗ describes the state of the superconductor.
It is also worth noting that all states in this sector are sym-
metric under the spatial reflection L ↔ R. On this basis, the
Hamiltonian is represented by the block matrix

HS = E0I +

⎡
⎢⎢⎢⎢⎣

2ε + HSC

√
2v

0
0

√
2v 0 ε + gν 2v 0

0
2v

0 HSC + g(2ν − 1)

⎤
⎥⎥⎥⎥⎦,

(16)

where HSC is the 2 × 2 matrix describing the internal structure
of the superconductor as defined in Eq. (9). We note that for fi-
nite system size the matrix elements of the Hamiltonian would
include further terms proportional to 1/N which, however, are
neglected in the thermodynamic limit that we take here. Note
that in the thermodynamic limit both N and M diverge but
their ratio, the filling factor ν = M/N , remains finite.

In the S = 1 sector, we consider the Sz = 1 states, other Sz

subspaces being equivalent. The basis vectors are given as∣∣φT
0

〉 = |↑,↑〉 ⊗ ∣∣0, �N−1
M

〉
,∣∣φT

2

〉 = |↑,↑〉 ⊗ ∣∣↑ ↓, �N−1
M−1

〉
,∣∣φT

0X

〉 = 1√
2

(|↑, 0〉 − |0,↑〉) ⊗ ∣∣↑, �N−1
M

〉
, (17)

which are all parity antisymmetric states. On this subspace,
the Hamiltonian is represented by

HT = E0I +
⎡
⎣ 2ε + HSC

√
2v

0√
2v 0 ε + gν

⎤
⎦. (18)

To compare the two sectors with an even number of particles,
we compute the ground state of the Hamiltonian in each sector
as a function of ε. The results shown in Fig. 2 indicate that
the S = 0 sector always has lower minimal energy. In fact,
one can prove using perturbation theory that for v � |ε| the
difference of minimal energies

ET − ES = 2v4

|ε|3 (19)

115160-3
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FIG. 2. Comparison of DMRG (denoted by symbols × and �) and analytical results (solid and dashed lines). Different colors correspond
to different hybridization strengths, v/g = 0.2, 0.5, and 1.

is always positive. The scaling of v4 implies that the energy
difference stems from a fourth order process which is char-
acteristic of both superexchange and RKKY interaction. The
fourth order processes involve depopulation of the dots in the
singlet sector through the states of ψS

0D and φS
−2D. However, in

the triplet sector, the dots cannot be completely depopulated
due to the Pauli principle and because single particles cannot
move from the distinguished level to other SC levels in the
flatband limit.

B. Analytical results for an odd number of particles

If the total number of particles is odd, the system has an
overall spin of S = 1/2 describing a doublet state. Here, we
take Sz = 1/2. This sector can be split into a symmetric and
an antisymmetric subsector based on parity symmetry.

In the symmetric subsector, the relevant states are given by

∣∣φDsym
1

〉 = 1√
2

(|↑,↓〉 − |↓,↑〉) ⊗ ∣∣↑, �N−1
M−1

〉
,

∣∣φDsym
0

〉 = 1√
2

(|↑, 0〉 + |0,↑〉) ⊗ ∣∣0, �N−1
M

〉
,

∣∣φDsym
2

〉 = 1√
2

(|↑, 0〉 + |0,↑〉) ⊗ ∣∣↑ ↓, �N−1
M−1

〉
,

∣∣φDsym
−1

〉 = |0, 0〉 ⊗ ∣∣↑, �N−1
M

〉
, (20)

and the Hamiltonian is represented by

Hsym
D = E0I +

⎡
⎢⎢⎣

2ε + g(1 − ν) 0 −v 0
0

−v
ε + HSC

√
2v

0
0

√
2v 0 gν

⎤
⎥⎥⎦. (21)

In the antisymmetric subsector, the relevant states are

∣∣φDasym
1

〉 = 1√
6

(
2|↑,↑〉 ⊗ ∣∣↓, �N−1

M−1

〉
− (|↑,↓〉 + |↓,↑〉) ⊗ ∣∣↑, �N−1

M−1

〉)
,∣∣φDasym

0

〉 = 1√
2

(|↑, 0〉 − |0,↑〉) ⊗ ∣∣0, �N−1
M

〉
,

∣∣φDasym
2

〉 = 1√
2

(|↑, 0〉 − |0,↑〉) ⊗ ∣∣↑ ↓, �N−1
M−1

〉
,

and the Hamiltonian is given by

Hasym
D = E0I +

⎡
⎣2ε + g(1 − ν) 0

√
3v

0√
3v

ε + HSC

⎤
⎦. (22)

The minimal energies are numerically obtained and shown in
Fig. 2. The results show that the antisymmetric sector has
lower minimal energies, which is further confirmed by the
perturbative expansion for |ε| � v leading to

E sym
D − E asym

D = 2v2

|ε| . (23)

Note that the antisymmetric sector, particularly the state |φ1〉,
features FM alignment of the spins sitting on the dots even
though the total system is a spin-1/2 state. The FM coupling
between the spins differs essentially from what has been found
in the case of an even number of particles, where the spins
show AFM alignment in the singlet sector.

C. Discussion

The difference in behavior for odd and even electron
numbers can be understood by recalling the properties of
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superexchange [37,38]. If the superexchange between two
magnetic moments is realized through a single orbital level,
it can be shown that the nature of coupling depends on the
occupancy of the mediating orbital; see Refs. [37,39] and
Appendix C. If it is singly occupied, the magnetic moments
are preferentially FM aligned, while for the empty or doubly
occupied midstate the coupling is AFM. For an odd total num-
ber of particles, the energetically most favorable configuration
is that the extra particle occupies the distinguished level of the
superconductor, ensuring single occupancy in the orbital that
bridges both quantum dot levels.

For an even number of particles, however, all electrons of
the superconductor tend to form Cooper pairs and, hence, the
distinguished level is more likely to be empty or doubly occu-
pied. We note that the probability of having a single particle
on the distinguished level is zero only in the strict flatband
limit. For finite bandwidth, single particle hopping takes place
among the SC levels, which indicates that the probability of
single occupancy is not zero. This effect is further analyzed in
Sec. IV.

D. Comparison with DMRG results

We compare the analytical results with the results of a
DMRG calculation carried out with N = 80 superconducting
levels and n = 82 and 83 particles. The numerical simulation
has been performed with a uniform distribution of couplings,
γLi = γRi = 1/

√
N , which corresponds to α = 1 as explained

after Eq. (5). The on-site interaction has been set to U/g = 40.
The comparison in Fig. 2 confirms that the analytical

approach produces correct results as regards the spin config-
uration. Namely, numerical simulations also indicate AFM
coupling for an even and FM coupling for an odd number
of particles. However, some quantitative differences are ob-
served. These are the consequences of finite U and of the
finite system size in DMRG. The dot energy level has been
swept between −20g and −5g to cover the regime where the
probability of single occupancy of the QDs is high. We do
not study ε < −20g because charge fluctuations through dou-
bly occupied states, which are not included in our analytical
model, would play a more important role. The fingerprints of
these charge fluctuations are captured by the DMRG close
to ε = −U/2 = −20g but these have no effect on the spin
configuration.

IV. EFFECTS OF FINITE BANDWIDTH

The flatband limit has been shown to represent an adequate
model for the situation of a single QD coupled to the SI [16].
There, the effects of finite bandwidth lead to some quantitative
modifications but no change in the general structure has been
observed.

We now investigate whether the nature of spin couplings
of the double dot system uncovered in the flatband limit is
preserved for finite bandwidth. Since the Richardson model
with finite bandwidth and attached QDs cannot be handled
analytically, we mostly rely on DMRG calculations (below we
will also introduce a minimal analytical model which qual-
itatively describes the main feature). For simplicity, we will
consider the case of a uniform distribution of energy levels εi
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FIG. 3. Effects of finite bandwidth for an even number of par-
ticles at different values of hybridization strength (DMRG results).
The energy difference ET − ES (solid lines, left vertical axis) changes
sign with increasing bandwidth, indicating that the ground state
becomes a triplet state. This feature is further verified by calculating
the spin-spin correlation between the dots (dashed lines, right vertical
axis).

in the SI spanning the interval [−W : W ]. The numerical sim-
ulations are performed with several hybridization strengths,
v/g = 0.2, 0.5, and 1. The QD parameters are U/g = 40 and
ε/g = −10.

We find that for an odd number of particles the finite band-
width does not change the spin configuration in the ground
state. In the studied regime, the spins are always FM aligned.

However, for the even number sector, we do find a differ-
ence: whereas the flatband limit exhibits AFM alignment, we
observe FM alignment at large enough values of the band-
width. Figure 3 shows that above some limit value of the
bandwidth, which is in the range of g, the triplet sector has
lower energy.

We now present an analytical model which recovers this
feature. The finite bandwidth is the consequence of the kinetic
energy of the particles in the superconductor. In the original
basis determined by the operators ci, the kinetic energy is
represented by a diagonal matrix with the entries of εi. After
applying the unitary transformation ci → f j transforming the
hybridization into a more convenient form, the kinetic energy
term becomes nondiagonal. In principle all-to-all couplings
could appear but we only consider those in which the dis-
tinguished state f0 participates. Therefore, the kinetic energy
term is written as

Hkin = t√
N

∑
i �=0,σ

( f +
iσ f0σ + H.c.). (24)

This Hamiltonian has a spectrum of {−t, 0, 0, . . . , 0, t} which
differs from the equidistant set of εi, but possesses a finite
bandwidth of 2t in the thermodynamic limit.

This hopping process breaks Cooper pairs inside the super-
conductor. Therefore, the basis set of |�0〉 and |�2〉 as defined
in Eq. (8) must be complemented with the Cooper-pair-broken
state

|�1〉 = 1√
2

(∣∣↑, �N−1
M−1,+↓

〉 − ∣∣↓, �N−1
M−1,+↑

〉)
, (25)
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where

∣∣↑, �N−1
M−1,+↓

〉 = 1√
N − 1

N−1∑
i=1

f +
0↑ f +

i↓
∣∣0, �N−1

M−1

〉
(26)

describes a state with a single particle occupying the dis-
tinguished site and its partner residing deeper inside the
superconductor. Note that this state characterizes one broken
Cooper pair. Due to the coupling to the quantum dots, states
with additional broken Cooper pairs could also occur. Since
breaking further pairs always costs an energy proportional to
g, we neglect states with more than one broken pair.

On the subspace spanned by |�0〉, |�1〉, and |�2〉, the
Hamiltonian of the superconductor in isolation is now repre-
sented by

HSC+kin =

⎡
⎢⎣

gν
√

2ν t β√
2ν t g

√
2(1 − ν) t

β
√

2(1 − ν) t g(1 − ν)

⎤
⎥⎦, (27)

where β = −g
√

ν(1 − ν) as it was defined in Eq. (11). It is
instructive to study the probability of single occupancy of the
distinguished level as a function of t . If t = 0, the eigenvalues
are zero, g, and g; the lowest energy of zero corresponds to
a mixture of |�0〉 and |�2〉, indicating that the probability
of single occupancy is zero. If the hopping parameter has
a small but nonzero value, the |�1〉 state is admixed to the
ground state, indicating that the ground state contains broken
Cooper pairs. Second order perturbation theory indicates that
the ground state energy is shifted to −2t2/g in the presence
of a small t . In the opposite limit, t → ∞, the eigenval-
ues are −√

2t , 0, and
√

2t . The ground state is (|�0〉 −√
2|�1〉 + |�2〉)/2. In this state, the probability of having a

single particle on the distinguished level is 1/2. Between the
two limiting cases, the probability increases smoothly from 0
to 1/2.

It should be emphasized that in reality singly occupied
levels do not appear in the GS of superconductors in isolation.
Blocked levels in the Richardson model are only present in
the excited states [28] or due to the Cooper-pair breaking
action of magnetic impurities. The results are thus physically
meaningful only when the QD is coupled to the supercon-
ductor and the local magnetic moment breaks pairs even in
the GS.

Taking also the dots into account, one has to add further
states with one broken Cooper pair to all sectors investigated
in the flatband limit. The calculation of the Hamiltonian on
these extended Hilbert spaces is tedious but straightforward
and can be found in Appendix D.

The minimal energies of the obtained Hamiltonians are
computed numerically and the difference between the min-
imal energies is shown in Fig. 4. The results show that for
small values of t the ground state forms a singlet, while by
increasing the strength of the kinetic energy the ground state
becomes a triplet. This is further confirmed by calculating the
spin-spin correlation between the two quantum dots, which
suddenly switches from approximately −3/4 to close to 1/4
as the levels of singlet and triplet states cross each other.
The curves of the figure almost overlap with each other,

FIG. 4. Comparison of minimal energies in the singlet (ES) and
the triplet (ET ) sector at different values of hybridization strength
(analytical results). Solid lines illustrate the energy difference while
dashed lines show the spin-spin correlation between the dots in the
ground state. By exceeding some limit value of the bandwidth, the
ground state changes from singlet to triplet. The transition value is
around 0.3g and depends only slightly on the hybridization strength.

indicating that the energy difference is indeed on the order
of v4/g3.

The minimal model for an even number of particles im-
plies that if the hopping processes between superconducting
energy levels are large enough, i.e., the kinetic energy term is
significant, then it is energetically favorable to break a Cooper
pair inside the superconductor and allow the dot spins to form
a triplet through the mediation of one member of the broken
pair. This is also the ground state for a normal-state bath in the
double quantum dot impurity problem [40–46].

V. CHARGING ENERGY

In the case of a small SI with a large charging en-
ergy EC , we add EC (N̂SC − n0)2 to the Hamiltonian, where
N̂SC= ∑

iσ c+
iσ ciσ = ∑

jσ f +
jσ f jσ is the SI occupancy operator

and n0 is the target number of particles controlled in experi-
mental setups by tuning the gate voltage applied on the SI.

We study by using DMRG whether the spin configura-
tion of the dots changes when tuning n0. The parameters
were chosen to fit typical experimental setups, U = 6
, ε =
−3
, EC = 2
. We use g = 0.8W , which corresponds to

 = 0.16W . For the hybridization, v = 0.25W is set, which
is equivalent to /U = 0.102 with  = πv2/(2W ) the hy-
bridization strength. The number of sites is N = 80 and the
the numbers of total particles are n = 82, 83, and 84. Figure 5
shows the n0 dependence of the energy of both the ground
and the first excited state. For an odd number of particles,
the solid line indicates the parity antisymmetric sector with
FM alignment while the excited state is the symmetric AFM
aligned state. It is readily seen that the charging energy only
shifts these energy states.

For an even number of particles, however, one can observe
level crossing. The ground state turns from an FM aligned
triplet state to an AFM singlet when n0 differs from n, the
actual number of particles. The modest kink in the solid lines
(indicated by arrows in Fig. 5) occurs where the energy of the
subgap state reaches the gap edge.
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80.0 80.5 81.0 81.5 82.0
n0

−41.6

−41.4

−41.2

−41.0

−40.8

E
ex

c/
W
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E

G
S/

W
Esing for n = 82

Etrip for n = 82

EGS for n = 83

Eexc for n = 83

Esing for n = 84

Etrip for n = 84

FIG. 5. Energy of the ground and first excited state as a function
of n0 for states with a different total number of particles n. For
n = 83, the ground state is the parity-antisymmetric state with FM
alignment, and the excited state is symmetric and AFM aligned.
For an even number of particles, solid lines represent the triplet
configuration with FM alignment, and dashed lines correspond to
singlet states. Which among the triplet and the singlet states is the
ground state and which is the excited state depends on n0.

The results indicate that the charging energy can also have
an effect on the spin configuration. The detailed behavior
depends both on the ratios of various energy scales EC , U ,
g, and W and also on the gate voltage through n0. Exploring
these dependencies is beyond the scope of the present paper.

VI. CONCLUSION

In this paper, the system consisting of a superconducting
island and two quantum dots is modeled within the frame-
work of the charge-conserving Richardson model. We have
focused on the regime when both dots are singly occupied
with a spin-carrying particle and studied how the two spins
are effectively coupled to each other. For an odd number of
particles, the spins align ferromagnetically. We find this result
both in the flatband limit and in the full model with finite
bandwidth. For an even number of particles, the spins align
antiferromagnetically in the flatband limit and ferromagnet-
ically in the wideband limit, with a transition between the
two cases at some intermediate ratio of bandwidth to pairing
strength. This significant change in the nature of the ground
state implies that the flatband limit results are not fully generic
and cannot be extended to any finite bandwidth case, not even
at the qualitative level. This is in contrast with what has been
found for a single QD case [16].

On the technical side, we introduced an extension of the
DMRG method for solving the general problem of two QDs
coupled through a SI for arbitrary parameters. We furthermore
presented a minimal analytical model that provides qualita-
tively adequate description of the spin configurations even for
a finite bandwidth.

Finally, we note that our results are also relevant for
applications aiming to split Cooper pairs by coupling a su-
perconductor to two quantum dots. We have shown that the
singlet configuration (AFM alignment) of the QD spins is the
ground state only in a limited part of the parameter space and
can be realized only when the pairing interaction is strong.
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APPENDIX A: LÖWDIN ORTHOGONALIZATION
OF SUPERCONDUCTOR LEVELS

We present a unitary transformation of the SC levels lead-
ing to a more convenient form of the hybridization. In general,
the hybridizations are given by

Hhyb,L = vL

∑
i

(γLid
+
L↑ci↑ + γ ∗

Lid
+
L↓ci↓ + H.c.),

Hhyb,R = vR

∑
i

(γRid
+
R↑ci↑ + γ ∗

Rid
+
R↓ci↓ + H.c.). (A1)

The operators
∑

i γLici↑ and
∑

i γRici↑ describe one (two)
distinguished state(s) if the overlap parameter fulfills |α| = 1
(|α| < 1). Here, α = ∑

i γ
∗
LiγRi.

First, we study the case of |α| < 1 with two distinguished
states which are not necessarily orthogonal to each other. We
choose the unitary transformation such that two of the new
basis vectors lie in the subspace of the two distinguished
states, D, while others form an orthonormal system which
is also orthogonal to D. Inside D, we apply Löwdin or-
thogonalization [47,48] to obtain a symmetric form of the
hybridization.

Let us introduce the operators

f ′
L↑ =

∑
i

γLici↑, f ′
R↑ =

∑
i

γRici↑ (A2)

which are not orthogonal for α �= 0. The Löwdin orthogonal-
ization is performed as

fL↑ = r f ′
L↑ − p∗ f ′

R↑, fR↑ = −p f ′
L↑ + r f ′

R↑ (A3)

with

r =
√

1 + |α| + √
1 − |α|

2
√

1 − |α|2
, p = eiδ

√
1 + |α| − √

1 − |α|
2
√

1 − |α|2
.

(A4)

The phase factor occurs if the overlap parameter is a
complex number, α = |α|eiδ . After the transformation, the
hybridizations can be rewritten as

Hhyb,L = vL

√
1 − |α|2(rd+

L↑ fL↑ + p∗d+
L↑ fR↑ + rd+

L↓ fL↓

+ pd+
L↓ fR↓ + H.c.),

Hhyb,R = vR

√
1 − |α|2(pd+

R↑ fL↑ + rd+
R↑ fR↑ + p∗d+

R↓ fL↓

+ rd+
R↓ fR↓ + H.c.). (A5)

The phase of α can be scaled out with the gauge transforma-
tion

dL↑ = d̃L↑e−i δ
2 , dR↑ = d̃R↑ei δ

2 ,

fL↑ = f̃L↑e−i δ
2 , fR↑ = f̃R↑ei δ

2 , (A6)

dL↓ = d̃L↓ei δ
2 , dR↓ = d̃R↓e−i δ

2 ,

fL↓ = f̃L↓ei δ
2 , fR↓ = f̃R↓e−i δ

2 . (A7)
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Henceforth, we will drop the notation of ∼ and consider that
both α and p are equal to their absolute value. By introducing
the angle ϕ as sin(2ϕ) = α, we obtain

Hhyb,L = vL

∑
σ

(cos(ϕ)d+
Lσ fLσ + sin(ϕ)d+

Lσ fRσ + H.c.),

Hhyb,R = vR

∑
σ

(sin(ϕ)d+
Rσ fLσ + cos(ϕ)d+

Rσ fRσ + H.c.).

(A8)

This hybridization is formally the same as that considered in
Ref. [18].

The great advantage of this Hamiltonian is that in the
special case of UL = UR, εL = εR, and vL = vR it has a parity
symmetry. The symmetry ensures that the system decouples
to symmetric and antisymmetric sectors.

In the case of α = 1, there is no need for Löwdin or-
thogonalization. The unitary transformation must be chosen
such that one of the new basis vectors is described by f0σ =∑

i γL/Riciσ , while the other new basis vectors must only fulfill
orthonormality.

APPENDIX B: MATRIX PRODUCT OPERATOR
REPRESENTATION OF THE HAMILTONIAN

The matrix product representation of the Hamiltonian is
given as H = ∏N+1

j=0 Wj . The first element, W0, is a vector and
defines the site with the left quantum dot:

W0 = (I [εn̂L + Un̂L↑n̂L↓] 0 0 0 0 dL↑ dL↓ d†
L↑ d†

L↓ 0 0 0).
(B1)

dLσ are the left quantum dot operators, n̂Lσ = d†
Lσ dLσ and

n̂L = n̂L↑ + n̂L↓. The superconducting sites j = 1, . . . , N are
represented by matrices Wj :

Wj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Xj −vRγR jc j↑Fj −vRγ ∗
R jc j↓Fj vRγ ∗

R jc
†
j↑Fj vRγR jc

†
j↓Fj 0 0 0 0 gy jc j↓c j↑ gy jc

†
j↑c†

j↓ 2Ecn j

0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 Fj 0 0 0 0 0 0 0 0 0 0

0 0 0 Fj 0 0 0 0 0 0 0 0 0

0 0 0 0 Fj 0 0 0 0 0 0 0 0

0 0 0 0 0 Fj 0 0 0 0 0 0 0

0 vLγ ∗
L jc

†
j↑ 0 0 0 0 Fj 0 0 0 0 0 0

0 vLγL jc
†
j↓ 0 0 0 0 0 Fj 0 0 0 0 0

0 vLγL jc j↑ 0 0 0 0 0 0 Fj 0 0 0 0

0 vLγ ∗
L jc j↓ 0 0 0 0 0 0 0 Fj 0 0 0

0 y jc
†
j↑c†

j↓ 0 0 0 0 0 0 0 0 1 0 0

0 y jc j↓c j↑ 0 0 0 0 0 0 0 0 0 1 0

0 n j 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)

where the on-site potential term is

Xj = [ε j + Ec(1 − 2n0)]n̂ j + (
y2

j g + 2Ec
)
n̂ j↑n̂ j↓. (B3)

Fj = (−1)n̂ j is the local fermionic parity operator. It takes care of the fermionic anticommutation rules by giving a factor of −1
if the jth level is occupied by a single particle. Finally, the right quantum dot is represented by a vector WN+1:

WN+1 = ([(εR + UnR↑nR↓)nR] 1 d†
R↑ d†

R↓ dR↑ dR↓0 0 0 0 0 0 0). (B4)

In DMRG and other tensor network methods it is straight-
forward to enforce the conservation of quantum numbers that
are sums of local quantities, such as total spin component Sz

or total charge. However, the local nature of the matrix prod-
uct state formalism means that enforcing global non-Abelian
symmetries, such as the SU(2) total spin invariance, is not triv-
ial [49], and in particular ITENSOR [50], the DMRG framework
we use, does not directly enforce their conservation. This
presents numerical challenges in case of (near) degeneracy
of two states with the same (n, Sz ), but different total spin
S, for example when the singlet and triplet states (both with
Sz = 0) cross. From the standpoint of the algorithm both states
are in the same symmetry sector and they both minimize total
energy, therefore their superposition is a valid well-converged

result of the DMRG optimization. However, assuming spin
conservation, such a superposition of a singlet and a triplet
state is unphysical. The problem can be solved by expanding
DMRG to optimize not only the total energy 〈H〉, but the sum
of total energy and total spin:

〈H〉 + w〈Ŝ2〉, (B5)

where Ŝ2 is the total spin operator in matrix product operator
form and w is the weight enforcing it. For a finite w, DMRG
will predominantly obtain the singlet state with S = 0. In the
numerical calculations, we set w = 1 for ground state search
and w = 0 for excited states. If the actual ground state is
singlet, this method finds it properly. However, if the actual
ground state is a triplet and the first excited state is a singlet,
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the spin enforcement method identifies the latter first and finds
the triplet ground state as the lowest energy state orthogonal
to the singlet state. The spin enforcement method ensures that
the numerically obtained ground state and the first excited
state correspond to well-defined Ŝ2 quantum numbers even in
the vicinity of degeneracy points.

APPENDIX C: SUPEREXCHANGE BETWEEN TWO DOTS

In this section, we consider a single level mediating ex-
change interaction between two QDs. Each dot hosts a single
particle and we assume symmetric configuration of parame-
ters. The interaction then depends on the occupancy of the
intermediate level.

The Hamiltonian is given as

H = ε
∑

σ

(d+
Lσ dLσ + d+

Rσ dRσ ) + U
∑

I=L,R

nI↑nI↓

+ ε f

∑
σ

f +
σ fσ + v

∑
σ

(d+
Lσ fσ + d+

Rσ fσ + H.c.), (C1)

where the on-site interaction U may be finite. Note that in the
pairing model of the main text there is no on-site potential
term; that situation corresponds to ε f = 0. In what follows,
we systematically study all cases depending on the occupancy
of the intermediary level and compare the AFM and FM
configurations.

1. Zero occupancy

For the FM aligned case, a representative state is given
as |↑,↑〉 ⊗ |0〉, where the first part |↑,↑〉 describes the state
of the two dots, while the second part is the state of the
intermediate level. The basis vectors in this spin sector are

|↑,↑〉 ⊗ |0〉, 1√
2

(|↑, 0〉 − |0,↑〉) ⊗ |↑〉. (C2)

The Hamiltonian is represented by

HT0 =
[

2ε
√

2v√
2v ε + ε f

]
, (C3)

where the index T0 indicates that the system is an overall
triplet state.

For the AFM aligned case, the basis vectors are

1√
2

(|↑,↓〉 − |↓,↑〉) ⊗ |0〉,

|↑, 0〉 + |0,↑〉
2

⊗ |↓〉 − |↓, 0〉 + |0,↓〉
2

⊗ |↑〉,
|0, 0〉 ⊗ |↑ ↓〉, (C4)

1√
2

(|↑ ↓, 0〉 + |0,↑↓〉) ⊗ |0〉, (C5)

which describe overall singlet states. On this subspace, the
Hamiltonian is represented by

HS0 =

⎡
⎢⎢⎢⎢⎣

2ε
√

2v 0 0√
2v ε + ε f 2v

√
2v

0 2v 2ε f 0

0
√

2v 0 2ε + U

⎤
⎥⎥⎥⎥⎦. (C6)

FIG. 6. Comparison of minimal energies of antiferromagnet-
ically (solid line) and ferromagnetically (dashed line) aligned
configurations in case of different occupancies of the intermediate
level. The energy and v are measured in arbitrary units. For the plot,
ε f = 2, U = 10, and ε = −5 were chosen in arbitrary units.

By calculating the minimal energy for both T0 and S0, we find
that the singlet sector has lower minimal energy; see the blue
lines in Fig. 6.

2. Single occupancy

In this case, the f level hosts one particle with spin down.
The total spin is 1/2 and, hence, the sector describes doublet
states but we distinguish between parity symmetric and anti-
symmetric subsectors exhibiting AFM and FM alignment on
the dots, respectively. In the parity-antisymmetric sector, the
basis vectors are given by

1√
2

(|↑, 0〉 − |0,↑〉) ⊗ |↑ ↓〉,

1√
6

(2|↑,↑〉 ⊗ |↓〉 − (|↑,↓〉 + |↓,↑〉) ⊗ |↑〉),

1√
2

(|↑,↑↓〉 − |↑ ↓,↑〉) ⊗ |0〉,

1√
2

(|0,↑↓〉 − |↑ ↓, 0〉) ⊗ |↑〉, (C7)

and the Hamiltonian is represented by

HDasym =

⎡
⎢⎢⎢⎢⎣

ε + 2ε f

√
3v 0 v√

3v 2ε + ε f

√
3v 0

0
√

3v 3ε + U v

v 0 v 2ε + U + ε f

⎤
⎥⎥⎥⎥⎦.

(C8)

In the parity symmetric sector, the basis vectors are defined
by

1√
2

(|↓, 0〉 + |0,↓〉) ⊗ |↑ ↓〉,

1√
2

(|↑,↓〉 − |↓,↑〉) ⊗ |↓〉,
(C9)

1√
2

(|↑ ↓,↓〉 + |↓,↑↓〉) ⊗ |0〉,

1√
2

(|↑ ↓, 0〉 + |0,↑↓〉) ⊗ |↓〉,
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BÁCSI, PAVEŠIĆ, AND ŽITKO PHYSICAL REVIEW B 108, 115160 (2023)

and the Hamiltonian reads

HDsym =

⎡
⎢⎢⎢⎣

ε + 2ε f −v 0 −v

−v 2ε + ε f −v 0

0 −v 3ε + U v

−v 0 v 2ε + U + ε f

⎤
⎥⎥⎥⎦.

(C10)

By calculating the minimal energy for both Dsym and Dasym,
we find that the sector Dasym featuring ferromagnetic align-
ment has lower minimal energy; see the red lines in Fig. 6.

We note that the quadruplet states (e.g., Sz = 3/2) are
always higher in energy.

3. Double occupancy

This sector is analogous to the case of zero occupancy. The
f level now hosts two particles. In the triplet sector, the basis
states are

|↑,↑〉 ⊗ |↑ ↓〉, 1√
2

(|↑ ↓,↑〉 − |↑,↑↓〉) ⊗ |↑〉, (C11)

with the Hamiltonian

HT↑↓ =
[

2ε + 2ε f

√
2v√

2v 3ε + U + ε f

]
. (C12)

In the singlet sector, we have the following states:

1√
2

(|↑,↓〉 − |↓,↑〉) ⊗ |↑ ↓〉,

1

2
((|↑ ↓,↓〉 + |↓,↑↓〉) ⊗ |↑〉 − (|↑ ↓,↑〉 + |↑,↑↓〉)

⊗ |↓〉),

1√
2

(|↑ ↓, 0〉 + |0,↑↓〉) ⊗ |↑ ↓〉,

|↑ ↓,↑↓〉 ⊗ |0〉. (C13)

FIG. 7. Phase diagram of the ground state at ε = −5 and U = 10.

The Hamiltonian is represented by the matrix

HS↑↓ =

⎡
⎢⎢⎢⎣

2ε + 2ε f
√

2v 0 0√
2v 3ε + U + ε f −√

2v −2v

0 −√
2v 2ε + U + 2ε f 0

0 −2v 0 4ε + 2U

⎤
⎥⎥⎥⎦.

(C14)

As in the zero occupancy sector, the singlet has lower minimal
energy; see the green lines in Fig. 6.

So far, we have seen that for zero/single/double occupancy
of the intermediating level, the sector S0/Dasym/S↑↓ has the
lowest minimal energy. The phase diagram in Fig. 7 shows
the sector with the lowest overall energy as a function of v

and ε f .

APPENDIX D: MINIMAL ANALYTICAL MODEL OF KINETIC ENERGY

The kinetic energy can be taken into account with the hopping process between the distinguished level and all other levels.
The corresponding Hamiltonian is defined as

Hkin = t√
N

∑
j �=0,σ

( f +
0σ f jσ + H.c.), (D1)

which is added to the Hamiltonian in the flatband limit as given in Eq. (7). We note that, in general, one could consider hopping
terms between all remaining levels but that would break analytical solvability. We shall see that this minimal model is sufficient
to capture the singlet-triplet transition as a function of bandwidth.

In this Appendix, we study only the case of an even number of particles because this is the only sector where the DMRG
shows level crossing.

First, we consider the states in the singlet sector. The set of basis states of Eq. (15) must be extended as follows:

∣∣φS
0

〉 = 1√
2

(|↑,↓〉 − |↓,↑〉) ⊗ ∣∣0, �N−1
M

〉
,

∣∣φS
1

〉 = 1

2
(|↑,↓〉 − |↓,↑〉) ⊗ (∣∣↑, �N−1

M−1+↓
〉 − ∣∣↓, �N−1

M−1+↑
〉)
,

∣∣φS
2

〉 = 1√
2

(|↑,↓〉 − |↓,↑〉) ⊗ ∣∣↑ ↓, �N−1
M−1

〉
,
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∣∣φS
−1X

〉 = 1

2

(
(|↑, 0〉 + |0,↑〉) ⊗ ∣∣0, �N−1

M+↓
〉 − (|↓, 0〉 + |0,↓〉) ⊗ ∣∣0, �N−1

M+↑
〉)
,

∣∣φS
0X

〉 = 1

2

(
(|↑, 0〉 + |0,↑〉) ⊗ ∣∣↓, �N−1

M

〉 − (|0,↓〉 + |↓, 0〉) ⊗ ∣∣↑, �N−1
M

〉)
,

∣∣φS
1X

〉 = 1

2

(
(|↑, 0〉 + |0,↑〉) ⊗ ∣∣↑ ↓, �N−1

M−1+↓
〉 − (|↓, 0〉 + |0,↓〉) ⊗ ∣∣↑ ↓, �N−1

M−1+↑
〉)
,∣∣φS

−2D

〉 = |0, 0〉 ⊗ ∣∣0, �N−1
M+1

〉
,∣∣φS

−1D

〉 = 1√
2
|0, 0〉 ⊗ (∣∣↑, �N−1

M+↓
〉 − ∣∣↓, �N−1

M+↑
〉)
,

∣∣φS
0D

〉 = |0, 0〉 ⊗ ∣∣↑ ↓, �N−1
M

〉
. (D2)

On this space, the Hamiltonian is represented by the block matrix

H = E0I +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ε + HSC+kin

0
√

2v 0
0 0 −v

0 0 0
0

0 0 0√
2v 0 0
0 −v 0

ε + H̃SC+kin

0
√

2v 0
0 0 2v

0 0 0

0
0 0 0√
2v 0 0
0 2v 0

g(2ν − 1) + HSC+kin

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D3)

where HSC+kin is defined in Eq. (27) and

H̃SC+kin =

⎡
⎢⎣

2gν t
√

1 − ν β

t
√

1 − ν gν −t
√

ν

β −t
√

ν g

⎤
⎥⎦. (D4)

We note that in principle the operator Hkin leads out of this space and we should also take into account states in which two
Cooper pairs are broken. However, as we mentioned before, these are very high in energy, therefore we neglect them.

In the triplet sector, the basis states of Eq. (17) must be extended as follows:∣∣φT
0

〉 = |↑,↑〉 ⊗ ∣∣0, �N−1
M

〉
,∣∣φT

1

〉 = 1√
2
|↑,↑〉 ⊗ (∣∣↑, �N−1

M−1+↓
〉 − |↓, �N−1

M−1+↑
)
,

∣∣φT
2

〉 = |↑,↑〉 ⊗ ∣∣↑ ↓, �N−1
M−1

〉
,∣∣φ′T

1

〉 = 1

2

[|↑,↑〉 ⊗ (∣∣↑, �N−1
M−1+↓

〉 + |↓, �N−1
M−1+↑

) − (|↑,↓〉 + |↓,↑〉) ⊗ ∣∣↑, �N−1
M−1+↑

〉]
,

∣∣φT
−1X

〉 = 1√
2

(|↑, 0〉 − |0,↑〉) ⊗ ∣∣0, �N−1
M+↑

〉
,

∣∣φT
0X

〉 = 1√
2

(|↑, 0〉 − |0,↑〉) ⊗ ∣∣↑, �N−1
M

〉
,

∣∣φT
1X

〉 = 1√
2

(|↑, 0〉 − |0,↑〉) ⊗ ∣∣↑ ↓, �N−1
M−1+↑

〉
. (D5)

We note that these states all belong to the total Sz = 1. The sectors corresponding to Sz = 0 and −1 would lead to the same
Hamiltonian matrix. On this space, the Hamiltonian is represented by

H = E0I +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ε + HSC

0
0
0

0
√

2v 0
0 0 −v

0 0 0
0 0 0 2ε + g 0 0

√
2v

0 0 0√
2v 0 0
0 −v 0

0
0√
2v

ε + H̃SC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (D6)
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To compare the singlet and triplet sectors, we obtain the lowest minimal energies within the perturbation theory. For t, v � g �
ε, the energy difference is found to be

ET − ES = 2v4

|ε|3
(

1 − 3|ε|t2

2g3

)
, (D7)

indicating that the energy difference decreases with increasing t . The decreasing trend is induced by the sixth order process
which admixes the state |φ′T

1 〉, which has a relatively low energy of 2ε + g, to the ground state. The sixth order process involves
breaking a Cooper pair and a superexchange procedure between the states |φ′T

1 〉 and |φT
1 〉 through one member of the broken pair.

This process only exists in the triplet sector since there is no singlet counterpart to the φ′T
1 state. As t increases, the sixth order

process competes with the fourth order processes favoring AFM alignment and will eventually overtake it at t = t0 =
√

2g3/3|ε|.
Finally, we provide the perturbation theory results for both ES and ET . We list only the most important sixth order terms,

which involve states with both dots occupied since these are the most relevant for large |ε|. For small v and t ,

ES = E0 + 2ε + v2

ε − g
2

− 2t2

g
+ 2t2v2

g
(
ε − g

2

)2 − v4

g
(
ε − g

2

)2 + 4t4

g3
+ v4

ε
(
ε − g

2

)2 + E (6)
S ,

ET = E0 + 2ε + v2

ε − g
2

− 2t2

g
+ 2t2v2

g
(
ε − g

2

)2 − v4

g
(
ε − g

2

)2 + 4t4

g3
− v4(

ε − g
2

)3 + E (6)
T ,

E (6)
S = t2v4

g2(2ε − g)

⎛
⎝ 1(

ε − g
2

)2 + 1(
ε − 3g

2

)2 − 1(
ε − g

2

)(
ε − 3g

2

)
⎞
⎠,

E (6)
T = t2v4

g2(−g)

⎛
⎝ 1(

ε − g
2

)2 + 1(
ε − 3g

2

)2 + 1(
ε − g

2

)(
ε − 3g

2

)
⎞
⎠ (D8)

and in the limit of g � |ε| we obtain

ES = E0 + 2ε + v2

ε
− 2t2

g
+ 2t2v2

g2ε
− v4

gε2
+ 4t4

g3
+ v4

ε3
+ t2v4

2g2ε3
,

ET = E0 + 2ε + v2

ε
− 2t2

g
+ 2t2v2

g2ε
− v4

gε2
+ 4t4

g3
− v4

ε3
− 3t2v4

g3ε2
, (D9)

which is reformulated in Eq. (D7) in the limiting case of g � |ε|.
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